

appliness(TUTORIALS CSS BOOKMARK / SHARE / TOC

Combining
CSS Shapes with
CSS Regions

by Zoltan Horvath

TUTORIALS HTML ALCHEMY - COMBINING CSS SHAPES WITH CSS REGIONS

by Zoltan
Horvath

2 of 5

I have been working on rendering for almost a year now. Since I landed the initial
implementation of Shapes on Regions in both Blink and WebKit, I’m incredibly excited
to talk a little bit about these features and how you can combine them together.

Don’t know what CSS Regions and Shapes are? Start here!

The first ingredient in my HTML alchemy kitchen is CSS Regions. With CSS Regions, you
can flow content into multiple styled containers, which gives you enormous creative
power to make magazine style layouts. The second ingredient is CSS Shapes, which
gives you the ability to wrap content inside or outside any shape. In this post I’ll talk
about the “shape-inside” CSS property, which allows us to wrap content inside an
arbitrary shape.

HOLY CRAP - ANOTHER JAVASCRIPT SITE!

“I’m incredibly excited to
talk about these features

and how you can combine
them together.”

http://html.adobe.com/webplatform/layout/
http://html.adobe.com/webplatform/layout/regions/
http://html.adobe.com/webplatform/layout/shapes/

TUTORIALS HTML ALCHEMY - COMBINING CSS SHAPES WITH CSS REGIONS

Let’s grab a bowl and mix these two features together, CSS Regions and CSS
Shapes to produce some really interesting layouts!

In the latest Chrome Canary and Safari WebKit Nightly, after enabling the required
experimental features, you can flow content continuously through multiple kinds
of shapes. This rocks! You can step out from the rectangular text flow world and
break up text into multiple, non-rectangular shapes.

If you already have the latest Chrome Canary/Safari WebKit Nightly, you can just
go ahead and try a simple example on codepen.io. If you are too lazy, or if you want
to extend your mouse button life by saving a few button clicks, you can continue
reading.

In the picture above we see that the “Lorem ipsum” story flows through 4 different,
colorful regions. There is a circle shape on each of the first two fixed size regions.
Check out the code below to see how we apply the shape to the region. It’s pretty
straightforward, right?

DEMO

3 of 5

http://html.adobe.com/webplatform/enable/
http://html.adobe.com/webplatform/enable/
http://codepen.io/adobe/pen/KcJDu

TUTORIALS HTML ALCHEMY - COMBINING CSS SHAPES WITH CSS REGIONS

#region1, #region2 {
 -webkit-flow-from: flow;
 background-color: yellow;
 width: 200px;
 height: 200px;
 -webkit-shape-inside: circle(50%, 50%, 50%);
}

The content flows into the third (percentage sized) region, which represents a heart
(drawn by me, all rights reserved). I defined the heart’s coordinates in percentages,
so the heart will stretch as you resize the window.

#region3 {
 -webkit-flow-from: flow;
 width: 50%;
 height: 400px;
 background-color: #EE99bb;
 -webkit-shape-inside: polygon(11.17% 10.25%,2.50% 30.56%,3.92%
55.34%,12.33% 68.87%,26.67% 82.62%,49.33% 101.25%,73.50% 76.82%,85.17%
65.63%,91.63% 55.51%,97.10% 31.32%,85.79% 10.21%,72.47% 5.35%,55.53%
14.12%,48.58% 27.88%,41.79% 13.72%,27.50% 5.57%);
}

The content that doesn’t fit in the first three regions flows into the fourth region.
The fourth region (see the retro-blue background color) has its CSS width and
height set to auto, so it grows to fit the remaining content.

4 of 5

TUTORIALS HTML ALCHEMY - COMBINING CSS SHAPES WITH CSS REGIONS

•	 Robert Sedovšek: CSS EXCLUSIONS
•	 Adobe Explores the Future of Responsive Digital Layout with National Geographic

Content

After trying the demo and checking out the links above, I’m sure you’ll see the
opportunities for using shape-inside with regions in your next design. If you have
some thoughts on this topic, don’t hesitate to comment. Please keep in mind that
these features are under development, and you might run into bugs. If you do, you
should report them on WebKit’s Bugzilla for Safari or Chromium’s issue tracker for
Chrome. Thanks for reading!

This entry was posted in Regions, Shapes, Web Platform Features

REAL WORLD EXAMPLES

Zoltan Horvath
Adobe Web Platform

his blog

twitter

share

github

http://galjot.si/css-exclusions
http://blogs.adobe.com/webplatform/2013/05/06/adobe-explores-the-future-of-responsive-digital-layout-with-national-geographic-content/
http://blogs.adobe.com/webplatform/2013/05/06/adobe-explores-the-future-of-responsive-digital-layout-with-national-geographic-content/
http://blogs.adobe.com/webplatform/2013/08/27/html-alchemy-combining-css-shapes-with-css-regions/%23comment
https://bugs.webkit.org/
http://code.google.com/p/chromium/issues/
http://blogs.adobe.com/webplatform/category/features/css-regions/
http://blogs.adobe.com/webplatform/category/features/css-shapes/
http://blogs.adobe.com/webplatform/category/features/
http://blogs.adobe.com/
https://twitter.com/adobeweb
https://github.com/adobe-webplatform

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

A Taste of
FruitJS

by Andrew Husbeck

TUTORIALS A TASTE OF FRUITJS

by Andrew
Hushbeck

2 of 4

This article was originally published on Flippin’ Awesome on September 16, 2013.

FruitJS (pronounced Fruit Juice) is a new Node.js utility for writing your technical
documentation in Markdown and compiling to an easy to use HTML site. You can
install and use FruitJS through npm and the command line utility, or by grabbing
the source yourself at https://github.com/ktsashes/fruitjs. The project was built
with the goal of making it simple and quick for both technical and non-technical
people to get beautiful and useful documentation up quickly. In addition to this, it
allows documentation to be on Github (and rendered nicely there) as well as on its
own site, which will ensure it is easy to find.

This article will walk you through how to use FruitJS and a little about how it was
built.

Compiling your documentation is meant to be as dead simple as possible. Once
you’ve written your documentation, simply do the following:

1.	If FruitJS is not installed, you’ll want to run npm install –g fruitjs via the
command line.

2.	You’ll want to make a small JSON file describing what pages you’d like to include,
and in what order. Save that in the directory alongside your Markdown. It will
look something like this:

{
 “pages”: [“page1.md”, “page2.md”]
}

3.	Then run the script via the command line using fruitjs manifest.json

Your site should be rendered into a subdirectory within the current directory
named “output.” There are flags and options available in the command line to

GETTING STARTED

“FruitJS (pronounced Fruit
Juice) is a new Node.js

utility.”

http://flippinawesome.org/
http://flippinawesome.org/2013/09/16/a-taste-of-fruitjs/
https://github.com/ktsashes/fruitjs

TUTORIALS A TASTE OF FRUITJS

change where FruitJS outputs or to render everything on a single page. You can
also specify images, LESS, CSS and JavaScript files to include on and customize
your pages. You can check out the full documentation (rendered with the script of
course) on http://ktsashes.github.io/FruitJS/.

When building a Node app like this, basic building blocks are the most important
things. The first thing to do was research what modules existed that I could take
advantage of. First, and most obviously, was finding a good module for converting
Markdown to HTML. I could have ported the Markdown compiler myself, but
standing on others shoulders is much easier.

Depending on 3rd Party Libaries
The code was originally written using the Node module “markdown,” but because
of a poor middle representation, I switched to using marked. I needed a parser that
was flexible enough to handle Github flavored Markdown, but I also needed an
intermediate representation that I could run through in JavaScript. Marked offered
both of these, and was pretty simple to use.

One interesting thing I found was that the library had some pull requests for features
I needed to work properly. It’s tough when your module isn’t quite what you need,
and I found I really had two choices. The first was to try and find a different module
to use that had all the bells and whistles (or, failing that, write one) or to make
the modifications myself. I actually opted for making the modifications myself and
including the source in my package. The npm package format has an option to
specify you are controlling the versioning of a particular dependency manually, and
I ended up making another change or two to help myself out in the long run. A
little bit more overhead, but a customized tool works a lot better than none at all.

After the major module, most of the other things I needed were pretty straightforward.
Because file actions are asynchronous, and callbacks and streams aren’t much fun, I
opted to use RSVP to add promises to the system. I used Underscore for templating,
and LESS for CSS support. Optimist is good for command line arguments, and
mkdirp is a nice utility for writing files, so those got thrown in as well.

MAKING FRUITJS

3 of 4

http://ktsashes.github.io/FruitJS/
https://npmjs.org/package/marked
https://npmjs.org/package/rsvp
http://underscorejs.org/
http://lesscss.org/
https://github.com/substack/node-optimist

TUTORIALS A TASTE OF FRUITJS

Adding Extensibility
When writing the rest of the module, I had two major goals. The first was to make
it as easy as possible to go from Markdown to HTML. One simple command should
be enough. My second major goal was to make it easy to make your docs your
own. So, right from the start, I’ve been working on integrating a template system
with extensibility so that if you don’t like the style, you can pick another, or make
your own. With all that in mind, I came up with a one line command, a manifest file,
and the ability to add images, CSS, and JavaScript to your HTML.

If you take a look at the docs, there are a few things you might notice. Things are
a little sparse at the moment. There are no templates other than the default, your
manifest file gets long quickly, and there isn’t really support if you want to have a
custom menu. All of the support for this is planned, but not quite finished yet.

My goal is to allow you to get the documentation you want by simply going to the
command line and saying fruitjs. Templates, assets, custom menus, and making
the manifest optional are all planned on the way for the 1.0 release (currently we’re
at 0.6.1). So look forward to more coming soon, and if you have ideas you’d like to
see, feel free to add them to the Github, or hack away yourself.

MORE FRUITJS

Andrew Hushbeck
Web Developer

his blog

twitter

share

github

http://imgineme.com/
https://twitter.com/ktashes
https://github.com/ktsashes/

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

The Angular
Way

by Nicolas Bevacqua

TUTORIALS THE ANGULAR WAY

by Nicolas
Bevacqua

2 of 9

This article was originally published on Flippin’ Awesome on September 3, 2013. You
can read it here.

For the past few months I’ve been sailing around the world of Angular. Today I can
hardly imagine myself doing day to day coding on a large front-end web application
without some kind of data binding framework, such as Angular.js, Backbone.js, and
friends, and I can’t believe I’ve done so in the past.

I might however be a bit biased, considering the application I’m working on is a
PhotoShop-esque editor in the browser, which often presents the same data in radically
different ways. For example:

•	 Layers are presented graphically, taking up large portions of the screen. They are
also listed in a panel where you can delete them.

•	 When you select a layer it gets the typical dashed line around its edges, and it also
gets highlighted in the list view.

•	 Similarly, properties like the dimensions of a layer show up both in a panel and define
their size upon the canvas.

•	 The panels I’ve mentioned can be dragged around, collapsed, and closed.

This kind of interaction, data binding, and view synchronization would be easily be
a maintenance nightmare if it wasn’t for a framework such as Angular. Being able to
update a model in one place, and have Angular update all relevant views almost feels
like cheating. Adding, removing, or moving a layer is just a matter of changing an
object.layer.x += 10 and we’re done. There’s no need to invalidate the view by hand,
or to manually update each instance of the layer in the DOM, or to even interact with
the DOM, for that matter.

“I can hardly imagine
doing front-end web app

development without
some kind of data binding

framework.”

http://flippinawesome.org/
http://flippinawesome.org/2013/09/03/the-angular-way/
http://angularjs.org/
http://backbonejs.org/
http://underscorejs.org/
http://flippinawesome.org/

TUTORIALS THE ANGULAR WAY

Angular enabled us to go places we wouldn’t ever have dreamt of, such as setting
up a bunch of keyboard shortcuts that are enabled based on the current context of
the application. For example, text editing shortcuts, such as ctrl/cmd + B to toggle
bold text, are just enabled when we’re editing a text layer.

Similarly, we tacked a description onto these shortcuts (which are registered through
a service we created), and we are then able to show a list of shortcuts, along
with their descriptions, in a handy cheat sheet. Furthermore, we wrote a directive
which enables us to bind individual DOM elements with their keyboard shortcut
counterparts, showing a tooltip when you hover over them for a little while, letting
you know a keyboard shortcut is available, too.

Honestly, it’s as if we weren’t writing a web application anymore. The web is just
the medium. As we improve our understanding of Angular, the code gets more
modular, more self-contained, and yet more inter-connected. It is simply becoming
more Angular.

And by Angular I mean the highly interactive rich application development
philosophy behind Angular.js, the same one that’s enabled us to develop a piece
of software that I wouldn’t have thought possible a while back.

BECOMING MORE ANGULAR

3 of 9

TUTORIALS THE ANGULAR WAY

We were even able to develop a full-fledged history panel that updates the DOM
to the currently selected point in history, and it performs well, too! Seeing the
data binding capabilities of Angular update every small detail in your view work
flawlessly as you go back and forth in the history panel is inspiring, to say the least.

…the code-base used to be an uncontrollable mess.

Indeed, in the last few weeks we’ve been updating and re-writing the overall
architecture of our front-end. Before we took up this re-write, looking to update
Angular to edge, all the way from 0.10.6. That’s a pretty long way to go, if you look
at the change log.

Going through this refactoring, we went from doing Angular the wrong way, to
doing Angular the Angular way.

The wrong way, in our case, encompassed quite a few issues we had to work
through before getting to the lovable state our code-base is in at the moment. In
this article, I’ll discuss some of those issues and how we overcame them.

This one is, sadly, pretty common amongst folks who’ve been using Angular since
the early days. If you’re familiar with Angular, you might be familiar with this pattern,
too.

// winds up on window.LoginCtrl ...
var LoginCtrl = function ($scope, dep1, dep2) {
 // scope defaults
};

LoginCtrl.prototype.resetPassword = function () {
 // reset password button click handler
};

// more on this one later
LoginCtrl.$inject = [‘$scope’, dep1’, ‘dep2’];

IT WASN’T ALWAYS THIS EASY

CONTROLLERS DECLARED ON THE GLOBAL SCOPE

4 of 9

https://github.com/angular/angular.js/tree/v1.2.0rc1
https://github.com/angular/angular.js/tree/v0.10.6
https://github.com/angular/angular.js/blob/v1.2.0rc1/CHANGELOG.md%230106-bubblewrap-cape-2012-01-17

TUTORIALS THE ANGULAR WAY

That kind of file isn’t wrapped in a closure, either, meaning anything declared on
the root scope goes to the global window object – yuck. The Angular way to
do that is to use the module API they provide. But, as you can see, even in the
documentation the recommended setup is still outdated and suggests you use the
global scope mercilessly:

“Do this, and wonderful things will happen to you!”

// A Controller for your app
var XmplController = function($scope, greeter, user) {
 $scope.greeting = greeter.greet(user.name);
}

– the Angular.js documentation

Modules allow us to rewrite controllers in the following way:

angular.module(‘myApp’).controller(‘loginCtrl’, [
 ‘$scope’, ‘dep1’, ‘dep2’,
 function ($scope, dep1, dep2) {
 ‘use strict’;

 // scope defaults

 $scope.resetPassword = function () {
 // reset password button click handler
 };
 }
]);

The beauty I find in the way Angular approaches controllers is that you you need
the controller function anyways, because that’s used to inject the dependencies
required by the controller, and it provides a new scope, saving us from the need to
wrap all of our script files in self-invoking function expressions like (function()
{})().

5 of 9

http://docs.angularjs.org/guide/module

TUTORIALS THE ANGULAR WAY

You might’ve noticed that in the earliest example, dependencies are injected
using $inject. Most of the module API, on the other hand, allows you to pass
either a function or an Array containing the list of dependencies, followed by
the function that depends on those. This is the one thing that I don’t like in
Angular, and it’s probably the documentation’s fault. Most of the examples in the
documentation are treated as if you don’t really need the Array form, but the
thing is, you do. If you minify your code using a minifier without running ngmin
first, you’re going to have a bad time.

Since you didn’t explicitly declare your dependencies using the Array form
[‘$scope’,...], your clean-looking function arguments are going to get
minified to something like b,c,d,e, effectively killing Angular’s dependency
injection capabilities. I consider this to be a gross mistake in the way they built
the framework, for a similar reason to why I strongly dislike Require.js and their
troubling AMD modules.

If it’s not going to work in production, what good is it for?
My fundamental problem with this kind of behavior is that they have code in their
framework that is dead as soon as you go in production. That’s fine for utilities like
console and error reporting, which are useful during development, but it doesn’t
make any sense in syntactic sugar that just works during development.

These things infuriate me, but enough ranting.

Going in, the application was “kind of Angular”, in that it was just wrapped in
Angular, but most of the DOM interaction happened through jQuery, rendering
Angular pretty much moot. However, if I were to write an Angular.js application
from scratch today, I wouldn’t include jQuery right away, instead forcing myself to
use angular.element instead.

The angular.element API wraps jQuery if it’s present, and it alternatively
provides the Angular team’s implementation of jQuery’s API, called jqLite. It’s not
that jQuery is evil, or that we need yet another implementation that somewhat
reflects their API. It’s just that using jQuery isn’t very Angular.

DEPENDENCY $INJECTION

CUTTING DOWN ON THE JQUERY PROLIFERATION

6 of 9

https://github.com/btford/ngmin
http://blog.ponyfoo.com/2013/05/13/the-web-wars
https://github.com/angular/angular.js/blob/master/src/jqLite.js

TUTORIALS THE ANGULAR WAY

Lets look at a concrete, and dumb, example. This uses jQuery to do class manipulation
on the element where the controller has been declared.

div.foo(ng-controller=’fooCtrl’)

angular.module(‘foo’).controller(‘fooCtrl’, function ($scope) {
 $(‘.foo’).addClass(‘foo-init’);

 $scope.$watch(‘something’, function () {
 $(‘.foo’).toggleClass(‘foo-something-else’);
 });
});

However, we could be using Angular the way we’re supposed to, instead.

angular.module(‘foo’).controller(‘fooCtrl’, function ($scope, $element) {
 $element.addClass(‘foo-init’);

 $scope.$watch(‘something’, function () {
 $element.toggleClass(‘foo-something-else’);
 });
});

The bottom line is: you shouldn’t be manipulating the DOM (changing attributes,
adding event listeners) directly or through jQuery. You should be using directives
instead (p.s. that’s an excellent article, go read it).

If you’re still jQuery-lized, there’s lots of articles you could read, such as this
migration guide and my article on critically thinking about whether to use jQuery.

I won’t sit here and claim we’ve managed to remove jQuery altogether. We have
other, more important goals in place, such as releasing the product. It was still
worthwhile to remove as much jQuery spam as possible. Doing so simplified every
controller we went through. We created directives that manipulate the DOM, and
use angular.element, even if it just maps to jQuery today.

We have a dependency on jQuery UI, which I’m not pleased about. We’re clearly
not using it just for the sake of dialogs, we have directives for that. But dragging,
drag and drop, and, in particular, being able to drag something and drop it in a
sorted list, is just something that involves a lot of work if you’re not using jQuery UI;
there is no real alternative. The drag and drop problem has been solved, we could
(and probably should) be using angular-dragon-drop, which is a really simple drag
and drop implementation. Sortable, on the other hand, just depends on jQuery UI.

7 of 9

http://amitgharat.wordpress.com/2013/06/08/the-hitchhikers-guide-to-the-directive/
http://amitgharat.wordpress.com/2013/06/22/migration-guide-for-jquery-developers/
http://blog.ponyfoo.com/2013/07/09/getting-over-jquery
http://jqueryui.com/
https://github.com/btford/angular-dragon-drop
https://github.com/angular-ui/ui-sortable

TUTORIALS THE ANGULAR WAY

Another illness we had to deal with during our migration, was that the entire code-
base was crammed together in a single large file. This file contained all controllers,
services, directives, and code specific to each controller. I made it a point to break
it down so that we had exactly one file per component. Right now, we have very
few files with more than one component, and most of those happened because a
directive used a service to share its data with the outside world.

Although unrelated to Angular, we also modularized our stylesheets. We added a
two letter prefix to every class name we use in our code. This prefix represents the
component the class belonged to. pn-, for example, represents classes that style
the panels; ly- for layers, and so on. The immediate benefit this provides is that
you don’t have to think about class names anymore. Because you’re namespacing
them, it becomes much harder for you to accidentally re-use a class name. Another
benefit is reduced nesting, we used to have selectors such as #layoutEditor
div.layer .handle div, which now might be .ly-handle-content. The
deepest “nesting” we have now only occurs on overloaded selectors such as .fo-
bar[disabled]:hover or, at worst, something like .fo-bar .br-baz.

A few rules we laid out for this CSS class naming style were:

•	 Two characters to describe the component name. ly-, dd-, dg-, etc.
•	 Instead of nesting classes such as .ly-foo .bar, we gave .bar a more

appropriate .ly-foo-bar name
•	 Avoid styling tags directly, use classes for everything. This reduces confusion

and improves your ability to use semantic markup.
•	 Never use an ID in CSS.

After implementing this component-oriented CSS declaration approach, I have a
hard time thinking of going back to doing it “the class soup way”.

Angular forces you to write good code, but on a deeper level than that, it forces
you to think. A while later, it will either feel like a server-side implementation, or it’ll
become an unbearable hack-fest that you won’t be able to stand on. The choice is
up to you.

ORGANIZING A CODE BASE

8 of 9

TUTORIALS THE ANGULAR WAY

Let’s decompose one of the pieces of our application, the layers.

div.cv-layer(
 ng-repeat=”layer in page.layers | reverse”,
 ap-layer,
 ng-mousedown=”selectLayer(layer.id)”,
 ng-mouseup=”selectLayer(layer.id)”,
 ng-dblclick=”doubleClickLayer(layer)”,
 ng-hide=”layer.invisible”
)

Here, we’re using the cv-layer class, given that the element is part of the canvas
component (the canvas is where our layers are drawn to, not to be confused with
an HTML5 canvas). We’re then using the ngRepeat directive to create one of these
elements per layer, in a for-each kind of fashion. It is passed through a reverse
filter we wrote, so that the last layer is visually on top. The apLayer directive is
tasked with actually rendering the layer, whether it’s an image, some text, HTML,
or something else. The event directives (ng-mousedown, ng-mouseup, ng-
dblclick) simply delegate the event to our layer selection service, which handles
it from there. Lastly, ngHide probably doesn’t really need a lot of explaining.

That’s a huge amount of functionality and Angular manages to make it look simple
with readable HTML that sort of tells you what’s going on. Furthermore, it allows
you to separate the different concerns so that you can write concise pieces of code
that don’t try to do everything at once. In summary, it reduces complexity – making
the complex, simple. And the “hard to even fathom”, possible.

This article was originally published at http://blog.ponyfoo.com/2013/08/27/the-
angular-way

A PIECE OF HEAVEN

Nicolas Bevacqua
Web Developer

his blog

twitter

share

github

http://docs.angularjs.org/api/ng.filter:filter
http://blog.ponyfoo.com/2013/08/27/the-angular-way
http://blog.ponyfoo.com/2013/08/27/the-angular-way
http://blog.ponyfoo.com/
https://twitter.com/nzgb
https://github.com/bevacqua

appliness(TUTORIALS JQUERY BOOKMARK / SHARE / TOC

Migration guide for
jQuery developers

by Amit Gharat

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

by Amit
Gharat

2 of 11

There are couple of links explaining AngularJS to jQuery developers and my effort
also goes to do the same. This is dedicated to all the jQuery developers who wish
to know AngularJS before they dive in. I myself worked on jQuery since a very long
time and literally its hard to switch to something which is radically different and
way cooler than jQuery (sorry, darling!).

We all know about $(document).ready() or $(window).load() methods to
setup a safe wrapper around the code to make sure that everything runs after the
DOM is loaded.

Also, you might have used literal styled javascript with jQuery:

var App = {
 run: function() {
 var bootstrapper = ‘You have successfully bootstrapped jQuery’;
 $(‘div.alert’).html(bootstrapper);
 }
};

// Finally I’ll call the main method
$(document).ready(function() {
 App.run();
});

DOCUMENT IS READY?

“This is dedicated to the
jQuery developers who
wish to know AngularJS

before the dive in.”

http://stackoverflow.com/questions/14994391/how-do-i-think-in-angularjs-if-i-have-a-jquery-background
http://blog.artlogic.com/2013/03/06/angularjs-for-jquery-developers/
http://angularjs.org/
http://jquery.com/

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

Do not panic! Angular itself provides the manual bootstrapping the same way.
Angular advocates modularity so that every piece of an application should have its
own module and there is a main module that holds rest of the modules together.
The subsequent code defines the main module (similar to jQuery example above)
and run() block is the built-in (sort of) main method in Angular which runs once the
application is bootstrapped.

// Define a module, App
var App = angular.module(‘App’, []);

// Built-in run method
App.run(function($rootScope) {
 $rootScope.bootstrapper = ‘You have successfully bootstrapped AngularJS’;
});

// Finally bootstrap angular manually
angular.element(document).ready(function() {
 angular.bootstrap(document, [‘App’]);

 // Target an element instead
 // angular.bootstrap(jQuery(‘body’), [‘App’]);
});

The one thing to notice here is $rootScope – which is a global variable you can
bind properties to that can be injected in other modules for further use.

Finally we’ll use angular’s templating syntax {{ }} to declaratively place data into
the markup instead of grabbing the element explicitly like jQuery. Can you see?

<div class=”alert alert-success”>{{bootstrapper}}</div>

In case you are not a fan (like me) of manual bootstrapping, you can make it
automatic as well by setting ng-app directive on any element such as html, body
etc. Angular looks for an element having ng-app on it and uses it as a target during
bootstrapping. Now you do not need angular.element(document).ready()
block as defined above.

<html ng-app=”App”>

3 of 11

http://jsfiddle.net/codef0rmer/hvf6X/
http://docs.angularjs.org/api/ng.directive:ngApp

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

AJAX is the second most important thing people use jQuery for. jQuery provides
different methods to fire up an XHR call.

$.get
$.post
$.getJSON
$.load
$.ajax

In angular, there is $http service which is a wrapper around the browser’s
XMLHttpRequest object that returns promises .then(), .success(), and
.error() based on the request was successful or failed.

$http.get
$http.head
$http.post
$http.put
$http.delete
$http.jsonp

The only difference is that you have to manually inject it into the module definition.
Suppose I want it inside the run() block we’d seen before:

App.run(function($rootScope, $http) {
 $http.get(‘foobar.php’).success(function(data, status) {
 // I succedded
 }).error(function(data, status) {
 // I failed
 });
});

XHR

4 of 11

http://api.jquery.com/jQuery.get/
http://api.jquery.com/jQuery.post/
http://api.jquery.com/jQuery.getJSON/
http://api.jquery.com/jQuery.load/
http://api.jquery.com/jQuery.ajax/
http://docs.angularjs.org/api/ng.%24http%23get
http://docs.angularjs.org/api/ng.%24http%23head
http://docs.angularjs.org/api/ng.%24http%23post
http://docs.angularjs.org/api/ng.%24http%23put
http://docs.angularjs.org/api/ng.%24http%23delete
http://docs.angularjs.org/api/ng.%24http%23jsonp

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

jQuery was made to do so, Angular is not!

In AngularJS, try to avoid touching DOM implicitly as much as possible so that you
can fully leverage the 2-way data binding between your data and the DOM. We are
going on journey to build a process order page using following directives.

ng-model

In jQuery, .val() is a setter/getter method to interact with form controls which
was quite amazing but it gets worst when you want to show the value elsewhere
instantly, means we had to bind keypress events on the input control that will
update the DOM as expected. But its too much effort as well as code for such a
small task.

Angular provides a neat directive to rule them all. Always use ng-model in order
to read values out of form controls. You do not have to manually select an element
to set/get its value – Just play with plain old javascript object/array.

<input type=”text” ng-model=”name”>

App.run(function($rootScope) {
 // setting the default value for the input
 $rootScope.name = ‘AngularJS’;

 // this will return the existing value of the input
 // console.log($rootScope.name);
});

ng-options

Use to lay out options based on model for select element. Know more about it.

App.run(function($rootScope) {
 $rootScope.cities = [
 {id: ‘NM’, name: ‘Navi Mumbai’},
 {id: ‘PN’, name: ‘Pune’}
];
});

<select ng-model=”city” ng-options=”c.name for c in cities”></select>

DO NOT TOUCH THE DOM

5 of 11

http://docs.angularjs.org/api/ng.directive:ngModel
http://docs.angularjs.org/api/ng.directive:select
http://odetocode.com/blogs/scott/archive/2013/06/19/using-ngoptions-in-angularjs.aspx

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

ng-class

Toggle CSS classes based on expression. This is a very common thing in jQuery:

if (same) {
 $(‘small’).removeClass(‘strike’);
} else {
 $(‘small’).addClass(‘strike’);
}

In Angular, you can use ng-class directive to apply CSS classes conditionally. If
same is boolean true then apply strike class. Otherwise remove it.

<small ng-class=”{‘strike’: !same}”>same as billing</small>

ng-disabled

Similar to ng-class, you can disable/enable form controls using ng-disabled directive.
In jQuery,

$(‘[ng-model=”shipping_name”]’).prop(‘disabled’, same);
In angular,

<input ng-disabled=”same”
 type=”text”
 ng-model=”shipping_name”
 placeholder=”Full Name”>

ng-change

You may want to reflect your billing address as shipping address instantly.
In jQuery,

<input onkeypress=”$(‘[ng-model=”shipping_name”]’).val($(‘[ng-model=”billing_
name”]’).val());”
 type=”text”
 ng-model=”billing_name”>

6 of 11

http://docs.angularjs.org/api/ng.directive:ngClass
http://docs.angularjs.org/api/ng.directive:ngDisabled
http://docs.angularjs.org/api/ng.directive:ngChange

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

In Angular,

<input ng-change=”reflect()” type=”text” ng-model=”billing_name”>

$rootScope.reflect = function() {
 $rootScope.shipping_name = $rootScope.billing_name;
 $rootScope.shipping_address = $rootScope.billing_address;
 $rootScope.shipping_city = $rootScope.billing_city;
};

ng-click

In jQuery,

$(‘div.btn-primary’).click(function() {
 processed = true;
});

In Angular,

<button class=’btn btn-primary’ ng-click=”processed = true”>Process Order</
button>

ng-show/ng-hide

This is again very common thing in jQuery to show/hide elements based on
conditions.

In jQuery,

if (processed) {
 $(‘div.alert’).show();
} else {
 $(‘div.alert’).hide();
}

In Angular,

<div class=”alert alert-success” ng-hide=’!processed’>
 Well done! We’ve successfully processed the order.
</div>

Here is the Final Demo of our Process Order form using all above directives.

7 of 11

http://docs.angularjs.org/api/ng.directive:ngClick
http://docs.angularjs.org/api/ng.directive:ngShow
http://docs.angularjs.org/api/ng.directive:ngHide
http://jsfiddle.net/codef0rmer/UraGk/show/

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

Many of us often create a separate header and footer partials to be injected into
many pages instead of repeating all over again.
In jQuery,

<body>
 <div id=’header’></div>
 <script type=”text/javascript”>
 $(‘#header’).load(‘header.html’);
 </script>

 <!-- Body -->

 <div id=’footer’></div>
 <script type=”text/javascript”>
 $(‘#footer’).load(‘footer.html’);
 </script>
</body>

In Angular, ng-include works similar to jquery.load but also allows to compile and
include an external HTML fragment. Do not forget to wrap your html fragment in
single quotes as I’ve already wasted an hour to figure that out :-(

<body>
 <div ng-include=”’header.html’”></div>

 <!-- Body -->

 <div ng-include=”’footer.html’”></div>
</body>

LOADING PARTIALS

8 of 11

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

Take an example of a simple addressbook application that contains 3 links shown
below and div.abPanel is the place where you would wish to load the appropriate
template.

<div class=’cell abLinks’>
 Add New Contact

 List all Contact

 Search any Contact

</div>
<div class=’cell abPanel’>Loading... Please Wait.</div>

In jQuery, you would probably do this.

$(‘#addNewContact’).click(function () {
 $(‘div.abPanel’).load(‘add_new_contact.html’, function () {
 // do all DOM manipulations or event bindings here
 });
});

In Angular, we’ll use awesome $routeProvider service without writing much
boilerplate code. This simply loads a template based on hash.

App.config(function ($routeProvider) {
 $routeProvider
 .when(‘/add’, { templateUrl: ‘partials/add.html’ })
 .when(‘/list’, { templateUrl: ‘partials/list.html’ })
 .when(‘/search’, { templateUrl: ‘partials/search.html’ })
 .otherwise({
 redirectTo: ‘/add’
 });
});

And finally change above links a little bit to:

<div class=’cell abLinks’>
 Add New Contact

 List all Contact

 Search any Contact

</div>
<div ng-view>Loading... Please Wait.</div>

HISTORY - PAGE NAVIGATION

9 of 11

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

The one thing to notice here is ng-view directive that lets your render the template
of the current route automagically.

The .animate() method allows us to create animation effects in jQuery. In order to
fade out the process order page while hiding, we can write something like this:

$(‘div.row’).animate({opacity: 0}, 1000);

In angular(version 1.1.4+), ng-animate allows us to control the animation either
using CSS or JS. This directive can gel up with other directives like ng-show/ng-
hide, ng-view, ng-include, ng-switch, etc.

We’ll simply add it to our div.alert which takes processed CSS class as an
option.

<div class=”alert alert-success” ng-show=’processed’ ng-animate=”’processed’”>
 Well done! We’ve successfully processed the order.
</div>

Then we’ll define necessary CSS classes. What happens here is when div.alert
is about to be shown (means processed becomes boolean true), both processed-
show and processed-show-active classes will be applied which will help fade in the
element for 0.5 seconds and later be removed. And display property sets to block.

.processed-show {
 -webkit-transition:all linear 0.5s;
 -moz-transition:all linear 0.5s;
 -ms-transition:all linear 0.5s;
 -o-transition:all linear 0.5s;
 transition:all linear 0.5s;
 opacity:0;
}
.processed-show-active {
 opacity:1;
}

ANIMATION

10 of 11

http://docs.angularjs.org/api/ng.directive:ngView
http://api.jquery.com/animate/
https://s3.amazonaws.com/angularjs-dev/demo-docs-jump/docs/api/ng.directive:ngAnimate

TUTORIALS MIGRATION GUIDE FOR JQUERY DEVELOPERS

We can use similar css while hiding the element but opacity will change from 100%
to 0%.

.processed-hide {
 -webkit-transition:all linear 0.5s;
 -moz-transition:all linear 0.5s;
 -ms-transition:all linear 0.5s;
 -o-transition:all linear 0.5s;
 transition:all linear 0.5s;
 opacity:1;
}
.processed-hide-active {
 opacity:0;
}

Check out the demo. There are more in-depth articles on yearofmoo.com and
nganimate.org.

We can not live without it. A few weeks ago, I’d written an article on how to use
jQuery plugin the angular way.

AngularJS really shines where it lets you write custom directives also. There are
hell of a lot of articles to get you started.

I’d seen many of my colleagues struggled to get going with AngularJS and hence
I’d decided to write this post. Time has come to expand the horizon. All the best.

JQUERY PLUGINS

CUSTOM DIRECTIVES

WRAP UPS

Amit Gharat
Web Developer

his blog

twitter

share

github

http://jsfiddle.net/codef0rmer/vqg4R/show/
http://www.yearofmoo.com/2013/04/animation-in-angularjs.html
http://www.yearofmoo.com/2013/05/enhanced-animations-in-angularjs.html
http://www.nganimate.org/
http://amitgharat.wordpress.com/2013/02/03/an-approach-to-use-jquery-plugins-with-angularjs/
http://amitgharat.wordpress.com/2013/02/03/an-approach-to-use-jquery-plugins-with-angularjs/
https://github.com/jmcunningham/AngularJS-Learning%23directives
http://amitgharat.wordpress.com/
https://twitter.com/codef0rmer
https://github.com/codef0rmer

appliness(INTERVIEW JONATHAN SNOOK BOOKMARK / SHARE / TOC

appliness(INTERVIEW JONATHAN SNOOK BOOKMARK / SHARE / TOC

INTERVIEW

Jonathan Snook

by Maile Valentine
photos Dan Rubin

3 of 13

APPLINESS: Hello Jonathan, thank
you for joining us! Could you
introduce yourselves to our readers?

Hi! I’m Jonathan Snook. Most people
call me Snook. A few people call me
Snookums. Those that call me Snooki
get a stern look. I call myself a web
developer but these days, I’m a
product manager at Shopify.

Can you tell us about your role with
Shopify?

As the Shopify Core Product Manager,
I define the feature roadmap of the
store administration tool that store
owners use to manage their stores.
I also ensure that other projects
integrate well with what we’re doing
and that we’re serving the mission of
Shopify to Make Commerce Better.

What inspired you to move freelance
work to working as a Product
Manager for a large company?

I really enjoyed the freelance life. I had
the freedom of working from home,
working with great clients around
the world, and having the flexibility
to work around my kids’ schedules.
Unfortunately, the financial instability
of freelance coinciding with some
personal issues led me to seek full-
time employment.

That actually led me to Yahoo! first
where I worked with the Communication
Design team to undertake the large
task of redesigning Yahoo! Mail,
Messenger, Calendar and more. I
spent two great years there working
with great people who were focused
on building a great product. It was a
wonderful learning experience and
was the first time that I was able to
stick with a product over a longer
period of time. It also led me to write
a book called Scalable and Modular
Architecture for CSS (or SMACSS, for
short). After two years, I found myself
no longer excited about the work and
decided to set my focus elsewhere.

I ran into Daniel Weinand, the
Chief Design Officer at Shopify, at
a conference. Shopify is based in
Ottawa, where I also happen to live,
and I’ve been following their growth
for a number of years. After some
discussion, the timing was right for
me to join the team. I started on the
design team and then, when an official
product team sprang up, I switched
roles to become a Product Manager.

While I’m doing less hands-on design
and development these days, I’m
really enjoying the role of being a
product manager. It has been a great
learning experience and has allowed
me to stretch myself in new areas. It
has been nice to have that personal
growth again.

IN
T
R
O
D
U
C
T
IO
N

INTERVIEW JONATHAN SNOOK

http://www.shopify.com/
http://smacss.com/
http://smacss.com/

JONATHAN SNOOK
EXPERIENCE

You are fluent in a variety of
technologies from client-side, server-
side and you have a knack for the
design side. How have you managed
to acquire this blend of skills?

They say it takes 10,000 hours to
master something. I can only imagine
how many hours I’ve spent building
web sites, although I’m still reluctant
to consider myself a master.

One of the best ways to build a breadth
of knowledge in web development is
to work for an agency. I found myself
thrown into the deep end on every
project having to figure out the client
environment and how to develop
something that could work. It seemed
like every client had something
different. One project was ASP, the
next was ColdFusion, the next was

4 of 13

INTERVIEW JONATHAN SNOOK

5 of 13

PHP. It was fun to play with whatever
technology I could get my hands on.

At the end of the day, users needed
to use the products I was building.
Therefore, I wanted to make sure
that the apps I built were functional
and usable. I took whatever design
knowledge and content strategy
knowledge I learned from co-workers
and applied it what I was building.
Over the years, I’ve had the privilege
of working with some very talented
people that have influenced my work
considerably.

Switching to freelancing allowed me to
flex my design muscle more than I could
working in an agency. This melding of
skills has proven very beneficial over
the years.

What sort of opportunities, or
freedom, has this unique set of skills
offered you throughout your career?

Just doing good work is one thing but
opportunities are more likely to present
themselves when you stick your neck
out. I made an effort to experiment
with my blog, to write about what I
learned, to write for other magazines,
and then to eventually turn that into
speaking at conferences and meetups.

I attribute my success to being able to
publicize my experience. It connected
me with people that I knew (and who
knew of me) and they were willing
to give me a chance even when the
situation was a little risky—namely,
working remotely—because I had

already demonstrated the knowledge
and experience.

Now that I’ve shifted into Product
Management, the breadth of
knowledge has been extremely
helpful. I have a really good sense of
what is required from both design and
development.

E
X
P
E
R
IE
N
C
E

INTERVIEW JONATHAN SNOOK

JONATHAN SNOOK
YOUR PROJECTS

Can you tell us a bit about SMACSS?

SMACSS stands for Scalable and
Modular Architecture for CSS. It’s an
approach for writing CSS. It’s not a
library or a framework. It’s a collection
of concepts that I have found to work
well when working on long-term
projects with larger teams.

How does SMACSS help smaller
sites? Bigger sites?

The longer you work on a project, the
larger the project, the larger the team,

the more benefit you’ll get from using
an approach like SMACSS. That’s not to
say that it’s not appropriate for smaller
sites. I could’ve used the concepts on
my own blog—a simple single layout
design—and they would’ve worked
just fine. But the design of my blog
has gone mostly unchanged in 4
years. That code could be absolutely
atrocious and it really doesn’t matter
because I never have to go back and
change it ever again.

When you have ever-evolving projects
with dozens upon dozens of layouts,

6 of 13

INTERVIEW JONATHAN SNOOK

http://smacss.com/

7 of 13

and widgets, and components that
need to be added to, removed, shifted,
or modified, then you need a system
that can accommodate that.

That’s where SMACSS comes in.
It advocates three key things:
categorizing your CSS, modularizing
your CSS, and use a naming convention.
Everything else stems from those 3
things.

Are there any big changes coming
to SMACSS?

No big plans in the works. I think the
concepts are just as applicable now
as they were 2 years ago when I first
released the book.

If I were to do another edition of the
book, a few things would be tweaked.
Some thoughts on how or what to
modularize and how to name things
effectively have solidified over the last
couple years that I think would be a
great addition to the book.

Do you have any other side projects
in the works these days?

Not right now. Every now and then I
work on a small project here and there.
Phmr.al was the most recent one from
a few months ago. It was a fun little
weekend project. I have a half dozen
project ideas that I’d love to work on
if I had the time.

Working at Shopify has filled up most
of my time these days making it more
difficult to work on side projects for

longer than a few hours here or there.

You have written and co-authored
some popular books - Scalable
and Modular Architecture for CSS,
The Art and Science of CSS and
Accelerated DOM Scripting with
Ajax, APIs, and Libraries (Expert’s
Voice). What inspired you to write
these books? How was the overall
experience? Do you think you’ll
write any more?

For The Art and Science of CSS, it was
a single chapter contribution and my
first foray into print. It’s a great feeling
to be able to walk into a bookstore
and see your face on the shelf. For
Accelerated DOM Scripting, the effort
was much larger. Too large, in fact. I had
to get some co-authors to help out and
very happy that Stuart Langridge, Dan
Webb, and Aaron Gustafson agreed
to each write a chapter.

I was inspired to write the book
as a response to many of the
JavaScript libraries that were gaining
(and still gaining) in popularity. I
wanted to provide some lower level
understanding. I still believe that many
people are too quick to pull a library
into their project instead of relying on
plain ol’ JavaScript. That’s not to say
that I’m against libraries. I just think
their inclusion on a project should be
well considered.

After Accelerated DOM Scripting, and
a couple failed book writing efforts
afterwards, I vowed to never write
another book. Writing is a painful

T
E
C
H
N
O
LO

G
Y

INTERVIEW JONATHAN SNOOK

http://phmr.al/
http://www.amazon.com/Scalable-Modular-Architecture-Jonathan-Snook/dp/0985632100/ref%3Dsr_1_3%3Fie%3DUTF8%26qid%3D1374771145%26sr%3D8-3%26keywords%3Djonathan%2Bsnook
http://www.amazon.com/Scalable-Modular-Architecture-Jonathan-Snook/dp/0985632100/ref%3Dsr_1_3%3Fie%3DUTF8%26qid%3D1374771145%26sr%3D8-3%26keywords%3Djonathan%2Bsnook
http://www.amazon.com/The-Art-Science-Jonathan-Snook/dp/B00D9TSAZG/ref%3Dsr_1_2%3Fie%3DUTF8%26qid%3D1374771145%26sr%3D8-2%26keywords%3Djonathan%2Bsnook
http://www.amazon.com/Accelerated-Scripting-Libraries-Experts-ebook/dp/B001FOPVO0/ref%3Dsr_1_1%3Fie%3DUTF8%26qid%3D1374771145%26sr%3D8-1%26keywords%3Djonathan%2Bsnook
http://www.amazon.com/Accelerated-Scripting-Libraries-Experts-ebook/dp/B001FOPVO0/ref%3Dsr_1_1%3Fie%3DUTF8%26qid%3D1374771145%26sr%3D8-1%26keywords%3Djonathan%2Bsnook
http://www.amazon.com/Accelerated-Scripting-Libraries-Experts-ebook/dp/B001FOPVO0/ref%3Dsr_1_1%3Fie%3DUTF8%26qid%3D1374771145%26sr%3D8-1%26keywords%3Djonathan%2Bsnook

8 of 13

process, seemingly for everyone
involved. However, after formulating
my thoughts on CSS architecture, I
really felt the need to write it down.
Writing allows a concept to be
explored and critiqued and picked
apart to see if it really stands up to
scrutiny. Writing SMACSS was a much
different beast than writing a book
on JavaScript. It still took a long time
(and I still became frustrated along the
way) but the effort didn’t feel quite as
painful as before. I’m happy with the
way things turned out.

Will I write another book? That remains
to be seen. Right now, nothing has
inspired me enough to go through
the months of pain that inevitably
come from writing a book. (That also
means that even if inspiration struck
me tomorrow, it’d still be at least half
a year before anything saw the light of
day. Ah, the joys of writing!)

T
E
C
H
N
O
LO

G
Y

INTERVIEW JONATHAN SNOOK

JONATHAN SNOOK
DEVELOPMENT

What are some of your favorite
development tools in your arsenal?
Design tools?

On the dev side, I keep things pretty
simple. I use Vim (and MacVim) as my
text editor of choice. I use Git now
as my source control, although I still
have a couple personal projects on
Subversion. For SQL development,
which I don’t do too often anymore, I
still use Navicat. I’ve used it for years
and haven’t had much incentive to
move off it. I use VMWare for my cross-
platform testing. On the design side, I

love Adobe Fireworks. Sadly, I’ll need
to find something new someday.

I feel like my toolset isn’t very exciting
these days. I’ve moved increasingly to
command line tools that have more
portability. It’s handy being able to
open a shell and being able to do
what you need regardless of whether
it’s local or on a server somewhere.

Do you prefer working on small or
large teams? What are the pros and
cons of each?

9 of 13

INTERVIEW JONATHAN SNOOK

10 of 13

When any company grows, I think the
secret isn’t to grow the team, but to
have multiple small teams work on
very distinct problems. I saw this at
Yahoo! and I see this at Shopify. Sure,
the overall team might be 5, 10, 20,
or 30 people in size but everybody
is still working in a small team that is
manageable. Divide and conquer!

What I have learned is that the more
teams you have, the better you need
to be at coordinating efforts across
multiple teams to ensure everything
comes together properly. There’s a
lot of communication that needs to
happen. And as someone who doesn’t
like meetings, I’m always looking for
ways to share better.

Do you have any design patterns,
frameworks, etc. you like to use on
a regular basis? How do you choose
the right tool for the job?

Depends on what type of project I’m
working on. At the PHP level, I’ve
settled into CakePHP and sometimes
Zend. There are other frameworks out
there but no longer have the time to
really expand out from what I know.
That’s a little disheartening to say out
loud. I’ll have to explore other options
at some point.

Choosing the right tool for the job
comes from an understanding of the
tools. If you have an in-depth knowledge
of only one tool (say, a hammer) then,
as the saying goes, everything looks
like a nail. Get to know the variety
of tools that are available, use them,

and learn where they shine and don’t
shine. Through experience, you learn
what tools to use when.

Of course, in looking for good tools,
there are things to look out for. Is it
extensible? Is it well supported? Does
it have good documentation? Does it
have a good community? Is it worth
jumping on something that hasn’t
even hit 1.0 yet? These are just a few
of the questions I think people need
to ask themselves before using other
people’s code.

What is your workflow for developing
CSS for a brand new site or app?

SMACSS reflects a bit of that workflow.
Everything starts from a design. I can’t
think of a project that I’ve started
without some level of design having
been done elsewhere like Photoshop,
Fireworks, or even just sketches.

Once I have a sense of what I’m going
to code, I start with my base styles.
What do I want my elements to look
like by default? From there, I start
to build out the layout. What are the
major content areas? Do I need a grid
system? After that, I start looking at
what the design patterns are. What is
the visual language that needs to be
codified? These are the modules that I
begin to build out.

D
E
V
E
LO

P
M
E
N
T

INTERVIEW JONATHAN SNOOK

11 of 13

How do you manage the various
aspects of developing for large
sites while working in a team? For
example, how can a large team
prevent duplication of efforts,
develop clean code, provide ongoing
maintenance, etc.?

I think the SMACSS approach lends
itself really well to developing in large
teams. The modularization helps
codify reusable design components
and makes it more evident when
there’s duplication. That type of
evidence encourages cleaner code.
The modularization also helps to have
different people working on different
components at the same time.

What are the top mistakes you see
when looking at other developer’s
CSS?

Overly qualified selectors (often
exacerbated by the use of
preprocessors), the use of !important,
and no consideration for naming
convention. CSS is, in a way, like a
language with only global variables.
Some people combine selectors as
a way of namespacing. That leads to
clashes where a class name ends up
doing two (or more) different things
and the only way to tell what is going
on is to go back to the CSS—which
might be spread across multiple files.

D
E
V
E
LO

P
M
E
N
T

INTERVIEW JONATHAN SNOOK

JONATHAN SNOOK
& FUN

You showed a game called CSS Panic
at Smashing Conf 2012 that was very
impressive in showing what can be
done with just CSS. Have you seen
any other examples since then that
have impressed you?

None nearly as impressive as that one.
CSS Panic is impressively done for so
many aspects that come together in
one piece. I love showing that off.

Your archive page of blog posts
goes back to 2001 and reads like an
historical timeline of the evolution

of the web. Do you ever marvel at
how much things have change in the
time you’ve been working with the
web?

I’m such a cynic in some sense. If I go
back to the early posts, I’m talking
about client-side and server-side
development. It’s not much different
than now. The technologies have
changed a bit. The techniques have
evolved. And yet, at the end of the day,
we’re mostly just building text files.
I use Vim—an editor that has been
around for decades—to edit a bunch

12 of 13

INTERVIEW JONATHAN SNOOK

http://cssdeck.com/labs/css-panic-game
http://smashingconf.com/
http://snook.ca/archives/

13 of 13

of HTML, CSS, and JavaScript. It feels
like things really haven’t changed in
the 13 years I’ve had a blog.

Outside of your work life, what
would you like to have more time
for in 2013 and beyond?

There’s life outside work? I’m a lucky
guy. I get to do something that I enjoy
day in and day out. I just hope I’m
lucky enough to enjoy what I’m doing
for years to come. How many people
get to say that?FU

N
INTERVIEW JONATHAN SNOOK

appliness(TUTORIALS PHONEGAP BOOKMARK / SHARE / TOC

Upload pictures
from a PhoneGap
app to Node.js

by Christophe Coenraets

TUTORIALS HOW TO UPLOAD PICTURES FROM A PHONEGAP APP TO NODE.JS (AND OTHER SERVERS)

by Christophe
Coenraets

2 of 3

You have seen the demos showing you how to access your camera and take pictures
from a PhoneGap application. But these demos often end there, and a number of
people have asked me for an end-to-end example showing how to take pictures and
upload them to a server.

I created a simple app that I called Picture Feed. It shows you the last pictures uploaded
by users, and lets you take pictures that are automatically uploaded to a server for
other people to see.

In this sample app, I upload the pictures to a Node.js server, and I keep track of the list
of pictures and associated information (if any) in a MongoDB collection. But the same
approach would work with other server stacks.

Here is a short video:

“A number of people have
asked for an end-to-end

example showing how to
take pictures and upload to

a server.”

TUTORIALS HOW TO UPLOAD PICTURES FROM A PHONEGAP APP TO NODE.JS (AND OTHER SERVERS)

The client-side and server-side (Node.js) code is available in this GitHub repository.

In my next post I’ll modify this example to demonstrate how to upload pictures to
Amazon S3.

This application was created with PhoneGap 3. Don’t forget to add the plugins
required by the application:

phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-device.git
phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-console.git
phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-file.git
phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-file-transfer.git
phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-camera.git

To test the application on iOS, make sure you modify the “widget id” value in
config.xml and specify the namespace that matches your application provisioning
profile.

SOURCE CODE

Christophe Coenraets

Developer Evangelist

his blog

twitter

share

github

https://github.com/ccoenraets/PictureFeed
http://coenraets.org/
http://www.twitter.com/ccoenraets
https://github.com/ccoenraets

appliness(TUTORIALS PHONEGAP BOOKMARK / SHARE / TOC

PhoneGap 3.0
Stuff you should know

by Holly Schinsky

TUTORIALS PHONEGAP 3.0 - STUFF YOU SHOULD KNOW

by Holly
Schinsky

2 of 9

PhoneGap 3.0 was announced recently and there are some important things to note
that I have attempted to summarize below.

If you hadn’t heard yet, the fastest and easiest way to use PhoneGap 3.0 is with the
new Command Line Interface. To install the CLI, follow the specific instructions here.

This is a completely different approach than previous versions of PhoneGap
where you would download a zip file of the latest version from here for instance
(as listed under Archives). With this new CLI approach, once you run sudo
npm install -g phonegap, you will have everything installed on your hard
drive to start creating PhoneGap 3.0 projects.

A lot happens behind the scenes when running the commands from the PhoneGap 3.0
CLI and understanding it will save time or possible frustration with project configuration.
It’s actually really cool and easy and makes the whole development process much
faster than prior versions of PhoneGap.

$ phonegap create ...

Outputs a sample application (www folder) with the following key components:

1.	config.xml sample for specifying application attributes for PhoneGap Build
2.	index.html (with included tags for phonegap.js script and CSS etc)
3.	index.css with basic CSS styles (css folder)
4.	index.js file with deviceReady handler (js folder)

PHONEGAP CLI

SO WHAT DOES THE CLI CREATE?

“PhoneGap 3.0 was
announced and I am

summarizing some
important things to note.”

http://phonegap.com/
http://docs.phonegap.com/en/3.0.0/guide_cli_index.md.html%23The%2520Command-line%2520Interface
http://docs.phonegap.com/en/3.0.0/guide_cli_index.md.html%23The%2520Command-line%2520Interface
http://phonegap.com/install/
https://build.phonegap.com/

TUTORIALS PHONEGAP 3.0 - STUFF YOU SHOULD KNOW

TIP: When you create a new project, you should specify the name and
project id using the long version of the create command, otherwise you
will get a project named HelloWorld with an id of com.phonegap.hello-
world. Fine for testing, but not what you’ll want for your real apps so I
recommend getting used to the longer syntax off the bat. I personally like
to explicity state the optional –id and –name arguments so I remember
exactly what each parameter is doing. See the docs for more options.

$ phonegap create ~/Documents/PhoneGapProjects/PG30Testing --id “org.devgirl.
pg30testing” --name “PG30Testing”

If you’re already familiar with the Cordova CLI, the PhoneGap CLI is actually built
on top of it and provides the same functionality plus integration with PhoneGap
Build. So with the PhoneGap CLI you can also build your application remotely from
the command line without having to have all the native SDKs for each platform
installed. See the paragraph titled Build Applications Remotely for more details.

WARNING: The newly created project will NOT include access to all of the API’s
(aka features and plugins) documented in the PhoneGap API docs (geolocation,
contacts etc) initially as it did in prior versions. Instead you install only those you
intend to use via the CLI so your application’s performance is optimal and not
bulky with code not being used. For instance, to install the geolocation plugin you
would use the following command:

$ phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-geolocation.git

Where you’re specifying the phonegap local plugin add command, followed
by the location of the project in git. The list of them all is here.

CORE PLUGINS MUST NOW BE ADDED...BUT IT’S EASY

3 of 9

http://docs.phonegap.com/en/3.0.0/guide_cli_index.md.html%23The%2520Command-line%2520Interface
https://github.com/apache/cordova-cli
http://docs.phonegap.com/en/3.0.0/guide_cli_index.md.html%23The%2520Command-line%2520Interface
http://docs.phonegap.com/en/3.0.0/index.html
https://git-wip-us.apache.org/repos/asf%3Fs%3Dcordova-plugin

TUTORIALS PHONEGAP 3.0 - STUFF YOU SHOULD KNOW

See the docs here as well for other core plugin locations.

Note that the plugin.xml does all the work for you in the new plugin
architecture so you do not have to include the script tag in your index.
html for that specific plugins’ .js file anymore, you simply add the plugin
with the CLI and it’s ready to go. You also do not access it off the window
object as before. So if you’ve added the Media plugin, you simply say var
media = new Media(src) for instance. You can see the entry in the
plugin.xml that refers to the Javascript source etc such as the following:
...
<js-module src=”www/Media.js” name=”Media”>
 <clobbers target=”window.Media” />
</js-module>
...

I recommend checking out the whole plugin.xml specification for more information.
Also, my colleague Ray Camden did a post about using other plugins in 3.0 that
can be found here.

When you add a platform via the phonegap build, install or run commands,
you will see another www folder created within each of the platform folders
(ie: yourprojectroot/platforms/ios/www for iOS and yourprojectroot/platforms/
android/assets/www for android). DO NOT use this folder directly as it is going to
be overwritten every time those commands are run. You should always work from
the root www folder and use the merges folder for changes specific to a platform.
See Customize Each Platform in the docs for details on merges.

You may wonder why there isn’t a phonegap.js file in your root www
folder. A different phonegap.js file is actually used per platform and copied
into that platform-generated www folder at build and run time, but the
included script tag was already put into your root index.html file for you.

WHY ALL THE WWW FOLDERS?

4 of 9

http://docs.phonegap.com/en/3.0.0/guide_cli_index.md.html%23The%2520Command-line%2520Interface
http://docs.phonegap.com/en/3.0.0/plugin_ref_spec.md.html
http://www.raymondcamden.com/index.cfm/2013/9/6/Working-with-Plugins-in-PhoneGap-30
http://docs.phonegap.com/en/3.0.0/guide_cli_index.md.html

TUTORIALS PHONEGAP 3.0 - STUFF YOU SHOULD KNOW

It might seem confusing to see the different config.xml files if you’re perusing
through what’s created by the CLI commands. There is a sample config.xml in your
root www folder that is used when a project is built remotely by PhoneGap Build
(via the phonegap build remote command). However, when you are building locally
for a platform you will make platform-specific changes to a config.xml file for each
platform in a separate location. For instance, for android you will find it under a
path like yourprojectroot/platforms/android/res/xml/config.xml. For ios you will
find it under yourprojectroot/platforms/ios/yourprojectname/config.xml. This
might lead to confusion if you’re not paying attention since you will also see the
sample one in the platforms www folder which was copied down from the root
project. The one in the platform-specific directory is the one to update and modify.

Note that you no longer have to add feature tag entries to your config.
xml file for each plugin you add if they are installed with the above CLI
approach and are 3.0-compliant. They will automatically be added into
the platform-specific config.xml file at those platform-specific locations
noted above.

Below are samples of the three config.xml files noted above to compare. I had
added one Media plugin to my project before sharing this sample so you can see
that one plugin specified as a feature…

<?xml version=’1.0’ encoding=’utf-8’?>
<widget id=”org.devgirl.pg30testing2” version=”1.0.0” xmlns=”http://www.w3.org/
ns/widgets” xmlns:gap=”http://phonegap.com/ns/1.0”>
 <name>PG30Testing2</name>
 <description>
 Hello World sample application that responds to the deviceready event.
 </description>
 <author email=”support@phonegap.com” href=”http://phonegap.com”>
 PhoneGap Team
 </author>
 <feature name=”http://api.phonegap.com/1.0/device” />
 <preference name=”permissions” value=”none” />
 <preference name=”orientation” value=”default” />
 <preference name=”target-device” value=”universal” />
 <preference name=”fullscreen” value=”true” />

CONFIG FILES GALORE!

PHONEGAP BUILD SAMPLE CONFIG.XML (IN WWW FOLDERS)

5 of 9

TUTORIALS PHONEGAP 3.0 - STUFF YOU SHOULD KNOW

 <preference name=”webviewbounce” value=”true” />
 <preference name=”prerendered-icon” value=”true” />
 <preference name=”stay-in-webview” value=”false” />
 <preference name=”ios-statusbarstyle” value=”black-opaque” />
 <preference name=”detect-data-types” value=”true” />
 <preference name=”exit-on-suspend” value=”false” />
 <preference name=”show-splash-screen-spinner” value=”true” />
 <preference name=”auto-hide-splash-screen” value=”true” />
 <preference name=”disable-cursor” value=”false” />
 <preference name=”android-minSdkVersion” value=”7” />
 <preference name=”android-installLocation” value=”auto” />
 <icon src=”icon.png” />
 <icon gap:density=”ldpi” gap:platform=”android” src=”res/icon/android/icon-
36-ldpi.png” />
 <icon gap:density=”mdpi” gap:platform=”android” src=”res/icon/android/icon-
48-mdpi.png” />
 <icon gap:density=”hdpi” gap:platform=”android” src=”res/icon/android/icon-
72-hdpi.png” />
 <icon gap:density=”xhdpi” gap:platform=”android” src=”res/icon/android/
icon-96-xhdpi.png” />
 <icon gap:platform=”blackberry” src=”res/icon/blackberry/icon-80.png” />
 <icon gap:platform=”blackberry” gap:state=”hover” src=”res/icon/blackberry/
icon-80.png” />
 <icon gap:platform=”ios” height=”57” src=”res/icon/ios/icon-57.png”
width=”57” />
 <icon gap:platform=”ios” height=”72” src=”res/icon/ios/icon-72.png”
width=”72” />
 <icon gap:platform=”ios” height=”114” src=”res/icon/ios/icon-57-2x.png”
width=”114” />
 <icon gap:platform=”ios” height=”144” src=”res/icon/ios/icon-72-2x.png”
width=”144” />
 <icon gap:platform=”webos” src=”res/icon/webos/icon-64.png” />
 <icon gap:platform=”winphone” src=”res/icon/windows-phone/icon-48.png” />
 <icon gap:platform=”winphone” gap:role=”background” src=”res/icon/windows-
phone/icon-173.png” />
 <gap:splash gap:density=”ldpi” gap:platform=”android” src=”res/screen/
android/screen-ldpi-portrait.png” />
 <gap:splash gap:density=”mdpi” gap:platform=”android” src=”res/screen/
android/screen-mdpi-portrait.png” />
 <gap:splash gap:density=”hdpi” gap:platform=”android” src=”res/screen/
android/screen-hdpi-portrait.png” />
 <gap:splash gap:density=”xhdpi” gap:platform=”android” src=”res/screen/
android/screen-xhdpi-portrait.png” />
 <gap:splash gap:platform=”blackberry” src=”res/screen/blackberry/
screen-225.png” />
 <gap:splash gap:platform=”ios” height=”480” src=”res/screen/ios/screen-
iphone-portrait.png” width=”320” />
 <gap:splash gap:platform=”ios” height=”960” src=”res/screen/ios/screen-

6 of 9

TUTORIALS PHONEGAP 3.0 - STUFF YOU SHOULD KNOW

iphone-portrait-2x.png” width=”640” />
 <gap:splash gap:platform=”ios” height=”1024” src=”res/screen/ios/screen-
ipad-portrait.png” width=”768” />
 <gap:splash gap:platform=”ios” height=”768” src=”res/screen/ios/screen-
ipad-landscape.png” width=”1024” />
 <gap:splash gap:platform=”winphone” src=”res/screen/windows-phone/screen-
portrait.jpg” />
 <access origin=”http://127.0.0.1*” />
</widget>

<?xml version=’1.0’ encoding=’utf-8’?>
<widget id=”io.cordova.helloCordova” version=”2.0.0” xmlns=”http://www.w3.org/
ns/widgets”>
 <name>Hello Cordova</name>
 <description>
 A sample Apache Cordova application that responds to the deviceready
event.
 </description>
 <author email=”dev@cordova.apache.org” href=”http://cordova.io”>
 Apache Cordova Team
 </author>
 <content src=”index.html” />
 <feature name=”LocalStorage”>
 <param name=”ios-package” value=”CDVLocalStorage” />
 </feature>
 <access origin=”http://127.0.0.1*” />
 <preference name=”KeyboardDisplayRequiresUserAction” value=”true” />
 <preference name=”SuppressesIncrementalRendering” value=”false” />
 <preference name=”UIWebViewBounce” value=”true” />
 <preference name=”TopActivityIndicator” value=”gray” />
 <preference name=”EnableLocation” value=”false” />
 <preference name=”EnableViewportScale” value=”false” />
 <preference name=”AutoHideSplashScreen” value=”true” />
 <preference name=”ShowSplashScreenSpinner” value=”true” />
 <preference name=”MediaPlaybackRequiresUserAction” value=”false” />
 <preference name=”AllowInlineMediaPlayback” value=”false” />
 <preference name=”OpenAllWhitelistURLsInWebView” value=”false” />
 <preference name=”BackupWebStorage” value=”cloud” />
 <preference name=”permissions” value=”none” />
 <preference name=”orientation” value=”default” />
 <preference name=”target-device” value=”universal” />
 <preference name=”fullscreen” value=”true” />
 <preference name=”webviewbounce” value=”true” />

IOS-SPECIFIC CONFIG.XML (UNDER PLATFORMS/IOS/YOURPROJECTNAME/)

7 of 9

TUTORIALS PHONEGAP 3.0 - STUFF YOU SHOULD KNOW

 <preference name=”prerendered-icon” value=”true” />
 <preference name=”stay-in-webview” value=”false” />
 <preference name=”ios-statusbarstyle” value=”black-opaque” />
 <preference name=”detect-data-types” value=”true” />
 <preference name=”exit-on-suspend” value=”false” />
 <preference name=”show-splash-screen-spinner” value=”true” />
 <preference name=”auto-hide-splash-screen” value=”true” />
 <preference name=”disable-cursor” value=”false” />
 <preference name=”android-minSdkVersion” value=”7” />
 <preference name=”android-installLocation” value=”auto” />
 <feature name=”Media”>
 <param name=”ios-package” value=”CDVSound” />
 </feature>
</widget>

<?xml version=’1.0’ encoding=’utf-8’?>
<widget id=”io.cordova.helloCordova” version=”2.0.0” xmlns=”http://www.w3.org/
ns/widgets”>
 <name>Hello Cordova</name>
 <description>
 A sample Apache Cordova application that responds to the deviceready
event.
 </description>
 <author email=”dev@cordova.apache.org” href=”http://cordova.io”>
 Apache Cordova Team
 </author>
 <content src=”index.html” />
 <feature name=”App”>
 <param name=”android-package” value=”org.apache.cordova.App” />
 </feature>
 <access origin=”http://127.0.0.1*” />
 <preference name=”useBrowserHistory” value=”true” />
 <preference name=”exit-on-suspend” value=”false” />
 <preference name=”permissions” value=”none” />
 <preference name=”orientation” value=”default” />
 <preference name=”target-device” value=”universal” />
 <preference name=”fullscreen” value=”true” />
 <preference name=”webviewbounce” value=”true” />
 <preference name=”prerendered-icon” value=”true” />
 <preference name=”stay-in-webview” value=”false” />
 <preference name=”ios-statusbarstyle” value=”black-opaque” />
 <preference name=”detect-data-types” value=”true” />
 <preference name=”show-splash-screen-spinner” value=”true” />

ANDROID-SPECIFIC CONFIG.XML (UNDER PLATFORMS/ANDROID/RES/)

8 of 9

TUTORIALS PHONEGAP 3.0 - STUFF YOU SHOULD KNOW

 <preference name=”auto-hide-splash-screen” value=”true” />
 <preference name=”disable-cursor” value=”false” />
 <preference name=”android-minSdkVersion” value=”7” />
 <preference name=”android-installLocation” value=”auto” />
 <feature name=”Media”>
 <param name=”android-package” value=”org.apache.cordova.media.
AudioHandler” />
 </feature>
</widget>

If you’re using any 3rd party plugins for Android and they haven’t yet been updated
to the PhoneGap 3.0 spec then you will need to change the path to the following
two classes within the Java plugin code for android:

import org.apache.cordova.api.CallbackContext;
import org.apache.cordova.api.CordovaPlugin;

-to-

import org.apache.cordova.CallbackContext;
import org.apache.cordova.CordovaPlugin;

•	 PhoneGap 3.0 FAQ
•	 Ray Camden’s PhoneGap 3.0 Released – Things You Should Know
•	 PhoneGap 3.0 Plugin Spec
•	 Ray Camden on Working with Plugins in PhoneGap 3.0

ONE MORE THING... JAVA API CLASSES-PACKAGE NAME CHANGE

MORE INFO...

Holly Schinsky
Developer Evangelist

HER blog

twitter

share

github

http://phonegap.com/blog/2013/07/31/phonegap-30-faq/
http://www.raymondcamden.com/index.cfm/2013/7/19/PhoneGap-30-Released--Things-You-Should-Know
http://docs.phonegap.com/en/3.0.0/plugin_ref_spec.md.html
http://www.raymondcamden.com/index.cfm/2013/9/6/Working-with-Plugins-in-PhoneGap-30
http://devgirl.org/
https://twitter.com/devgirlfl
https://github.com/hollyschinsky

appliness(TUTORIALS CSS BOOKMARK / SHARE / TOC

Repeat Properties
in Webkit

by Andrei Parvu

TUTORIALS REPEAT SPACE AND ROUND FOR MASK-REPEAT AND BACKGROUND-REPEAT PROPERTIES IN WEBKIT

by Andrei
Parvu

2 of 4

As a part of the CSS Masking and CSS Backgrounds and Borders specifications, the
-webkit-mask-repeat and background-repeat properties can have the values
of round and space.

For example, let’s say we have a green div with the following style, which is located on
a blue background:

div {
width: 250px;
height: 300px;
background-color: green;
-webkit-mask-image: url(star.png);
-webkit-mask-size: 91px 65px;
-webkit-mask-repeat: repeat;
}

where star.png is the following image:

“Exploring the round
and space values of CSS

Masking, Backgrounds and
Borders.”

TUTORIALS REPEAT SPACE AND ROUND FOR MASK-REPEAT AND BACKGROUND-REPEAT PROPERTIES IN WEBKIT

As you can see from figure 1, because the mask image does not fit a whole
number of times in the background positioning area (which is determined by the
background-origin or -webkit-mask-origin properties), it gets clipped. To
avoid this, we can specify a mask-repeat value of either round or space.

When using a value of round, the mask image gets scaled so that it will fit a whole
number of times, as shown in figure 2. From the original size of 91px x 65px the
image is shrunk to 83px x 60px, thus appearing exactly 3 times on the x-axis and 5
times on the y-axis. Quoting the spec: “In the
case of the width (height is analogous): if X ≠ 0 is
the width of the image and W is the width of the
background positioning area, then the rounded
width will be X’ = W / round(W / X) where round()
is a function that returns the nearest natural
number (integer greater than zero)”.

ROUND

3 of 4

TUTORIALS REPEAT SPACE AND ROUND FOR MASK-REPEAT AND BACKGROUND-REPEAT PROPERTIES IN WEBKIT

When using a value of space, the mask image is repeated as often as it fits in the
background positioning area without being clipped. Then, the images are spaced
out to fill the area, in such a way that the first and last images touch the edges of the
area. Figure 3 shows how the masks are spaced so
that 2 masks will appear on the x-axis and 4 masks
on the y-axis.

The repeat and space values also are implemented
for the background-repeat property. While writing
this blogpost we discovered that when resizing a
window containing an element with a background-
repeat: space value, the portion between the spaced
images is not drawn. We will fix this here: https://
bugs.webkit.org/show_bug.cgi?id=120607.

This entry was posted in Web Platform Features.

SPACE

Andrei Parvu
Adobe Web Platform Team

his blog

twitter

share

github

https://bugs.webkit.org/show_bug.cgi%3Fid%3D120607
https://bugs.webkit.org/show_bug.cgi%3Fid%3D120607
http://blogs.adobe.com/webplatform/category/features/
http://blogs.adobe.com/
https://twitter.com/adobeweb
http://html.adobe.com/

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

Variable and
Function Hoisting
in JavaScript

by Joshua Clanton

TUTORIALS VARIABLE AND FUNCTION HOISTING IN JAVASCRIPT

by Joshua
Clanton

2 of 5

Originally published in A Drip of JavaScript.

One of the trickier aspects of JavaScript for new JavaScript developers is the fact
that variables and functions are “hoisted.” Rather than being available after their
declaration, they might actually be available beforehand. How does that work? Let’s
take a look at variable hoisting first.

// ReferenceError: noSuchVariable is not defined
console.log(noSuchVariable);

This is more or less what one would expect. An error is thrown when you try to access
the value of a variable that doesn’t exist. But what about this case?

// Outputs: undefined
console.log(declaredLater);

var declaredLater = “Now it’s defined!”;

// Outputs: “Now it’s defined!”
console.log(declaredLater);

What is going on here? It turns out that JavaScript treats variables which will be declared
later on in a function differently than variables that are not declared at all. Basically, the
JavaScript interpreter “looks ahead” to find all the variable declarations and “hoists”
them to the top of the function. Which means that the example above is equivalent to
this:

var declaredLater;

// Outputs: undefined
console.log(declaredLater);

declaredLater = “Now it’s defined!”;

// Outputs: “Now it’s defined!”
console.log(declaredLater);

“One of the trickier
aspects of JavaScript
is that variables and

functions are hoisted.”

http://designpepper.com/a-drip-of-javascript

TUTORIALS VARIABLE AND FUNCTION HOISTING IN JAVASCRIPT

One case where this is particularly likely to bite new JavaScript developers is when
reusing variable names between an inner and outer scope. For example:

var name = “Baggins”;

(function () {
 // Outputs: “Original name was undefined”
 console.log(“Original name was “ + name);

 var name = “Underhill”;

 // Outputs: “New name is Underhill”
 console.log(“New name is “ + name);
})();

In cases like this, the developer probably expected name to retain its value from
the outer scope until the point that name was declared in the inner scope. But due
to hoisting, name is undefined instead.

Because of this behavior JavaScript linters and style guides often recommend
putting all variable declarations at the top of the function so that you won’t be
caught by surprise.

So that covers variable hoisting, but what about function hoisting? Despite both
being called “hoisting,” the behavior is actually quite different. Unlike variables, a
function declaration doesn’t just hoist the function’s name. It also hoists the actual
function definition.

// Outputs: “Yes!”
isItHoisted();

function isItHoisted() {
 console.log(“Yes!”);
}

3 of 5

TUTORIALS VARIABLE AND FUNCTION HOISTING IN JAVASCRIPT

As you can see, the JavaScript interpreter allows you to use the function before the
point at which it was declared in the source code. This is useful because it allows
you to express your high-level logic at the beginning of your source code rather
than the end, communicating your intentions more clearly.

travelToMountDoom();
destroyTheRing();

function travelToMountDoom() { /* Traveling */ }
function destroyTheRing() { /* Destruction */ }

However, function definition hoisting only occurs for function declarations, not
function expressions. For example:

// Outputs: “Definition hoisted!”
definitionHoisted();

// TypeError: undefined is not a function
definitionNotHoisted();

function definitionHoisted() {
 console.log(“Definition hoisted!”);
}

var definitionNotHoisted = function () {
 console.log(“Definition not hoisted!”);
};

Here we see the interaction of two different types of hoisting. Our variable
definitionNotHoisted has its declaration hoisted (thus it is undefined), but not its
function definition (thus the TypeError.)

You might be wondering what happens if you use a named function expression.

// ReferenceError: funcName is not defined
funcName();

// TypeError: undefined is not a function
varName();

var varName = function funcName() {
 console.log(“Definition not hoisted!”);
};

4 of 5

TUTORIALS VARIABLE AND FUNCTION HOISTING IN JAVASCRIPT

As you can see, the function’s name doesn’t get hoisted if it is part of a function
expression.

And that is how variable and function hoisting works in JavaScript.

Thanks for reading!

Joshua Clanton
Web Developer

his blog

twitter

share

github

http://designpepper.com/
https://twitter.com/joshuacc

appliness(TUTORIALS CSS BOOKMARK / SHARE / TOC

Responsive Design
and Bootstrap 3

by Burke Holland

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

by Burke
Holland

2 of 13

This article was originally published on Flippin’ Awesome on September 16, 2013. You
can read it here.

This is me and design. I want to be a designer. I want to build beautiful sites. I don’t
just want to code, I want to be an artist. A creative. I work for a UI company. Everything
that I live and breathe is UI.

The sad truth of the matter is that I am not a designer, and no amount of trying or
wanting is going to make me one. Just like Kip though, I refuse to give up on my dream.
It does mean though, that I need help. I need all the help I can get. Also, just like Kip,
even with all the help in the world, I still will never be able to build truly beautiful and
original sites. I will never be a cage fighter.

“I don’t just want to
code, I want to be an

artist.”

http://flippinawesome.org/
http://flippinawesome.org/2013/09/16/break-the-wrist-and-walk-away-responsive-design-and-bootstrap-3/
http://flippinawesome.org/

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

And that’s OK. If high school drilled one thing into us, it’s that you have to know
who you are and fully support that person. That and how to make a beer bong.
However, this means that I need help when it comes to CSS, and a lot of it. This is
why I love Twitter Bootstrap.

Responsive design is the concept that instead of your web page looking great on a
desktop and really tiny on a mobile phone, content is rearranged and kept large so
that instead it looks like a website that was written specifically for a mobile device.

Responsive design is generally broken up into three different conceptual areas…

1.	Fluid Grids
2.	Fluid Media
3.	Media Queries

Bootstrap 3 handles all three of these areas for you on some level, providing you
with a solid base on which to build your responsive application.

Before we get into the guts of Bootstrap 3 and how it wrangles responsive design
for you, lets first take a look at the groundwork that Bootstrap has laid for you with
it’s typography and base CSS resets.

TYPOGRAPHY
In this example, you see the various headings (h1 – h6), and a paragraph tag. Notice
that there is no left or right padding or margin on the text at all.

View Demo In New Window

If you toggle bootstrap off, you see how things change. The text is ugly for one,
using the default browser style. WebKit based browsers will also add a -webkit-
margin-before and -webkit-margin-after CSS class that adds some padding
to the text. Also, the size of the text is changed. If you change the font size on the
body to say, 20px, you can see that the browser resizes all the text.

RESPONSIVE DESIGN BASICS

BOOTSTRAP BASICS

3 of 13

http://getbootstrap.com/2.3.2/
http://alistapart.com/article/responsive-web-design
http://jsbin.com/evifiQA/1

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

body {
 font-size: 20px;
}

At its core, Bootstrap includes normalize.css. This is a library that does a “reset”
on your CSS. In other words, it provides a baseline for font, margin and padding
that assures your simple HTML will look the same in all browsers, as well as fix
some basic browser bugs. Note that in most modern browsers, normalize is almost
unnecessary. That’s encouraging.

MEDIA QUERIES
Let’s start by doing a brief examination of media queries. Media queries are one of
the 3 core pieces of the responsive design puzzle, but you can’t really understand
the other two if you don’t get this one.

A media query is defined by MDN in this rather verbose but precise description.

A media query consists of a media type and at least one expression that
limits the style sheets’ scope by using media features, such as width,
height, and color. Media queries, added in CSS3, let the presentation of
content be tailored to a specific range of output devices without having
to change the content itself.

I overly simplify it to just this.

Conditionally applying CSS based on the size of the browser window.

Media queries can be used to load in entire stylesheets…

<!-- CSS media query on a link element -->
<link rel=”stylesheet” media=”(max-width: 800px)” href=”example.css” />

But they are more commonly found inline in stylesheets loaded by the browser…

<!-- CSS media query within a style sheet -->
<style>
 @media tv and (min-width: 700px) and (orientation: landscape) {
 .facet_sidebar {
 display: none;
 }
 }
</style>

4 of 13

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

As you can see from this fancy pants media query for a tv, media queries consist of
two parts – a media type and a size rule that can have multiple conditions. Media
queries can get unwieldy. Most often, you will not see the media type. Usually
responsive design is done based on the size of the screen, not the media type that
the device reports itself to be. A device may lie about its identity, but it cannot lie
about it’s screensize.

Let’s take a look at a simple media query in action.

View Demo In New Window

This media query says that when the width of the screen gets below 700 pixels,
change the color of the text to “gentleman’s pink” – otherwise known as Salmon.
This is done by setting a max-width, which effectively says “This is the maximum
width at which the following CSS rule applies”. You can apply any CSS like this,
including transitions – where supported; like fading the text out using a transition.
Try changing the CSS above to the following and then resize the browser window.
The gray box displays the current width of the window. Notice that the CSS is
effectively removed when the media query’s conditions are not met.

h1 {
 -webkit-transition: opacity 1s;
 -o-transition: opacity 1s;
 -mos-transition: opacity 1s;
 transition: opacity 1s;
}

@media (max-width: 400px) {
 h1 {
 opacity: 0;
 }
}

We’re almost ready to get into Bootstrap itself and talk about how you use it
to build gorgeous responsive sites. Before we do though, a word from the legal
department of the web.

5 of 13

http://jsbin.com/IsOyUfo/1

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

Bootstrap is not magic. It does not cure cancer. Only Chuck Norris’ tears do that.
You are not going to drop Bootstrap onto your site and magically have a cross
platform application that works on every device and is future proof. In fact, you are
going to have to do a fair bit of extra work on top of what Bootstrap gives you out
of the box to be fully responsive.

Also, keep in mind that Responsive Design is really just the beginning when it
comes to building web experiences on mobile devices. Today’s phones and tablets
are capable of so much more than just laying out content with a font big enough
for you to read it. We are still trying to figure out how to simply display the content
for these devices, but they are poised to do so much more if we can leverage all
of the power they afford to users above and beyond what a desktop was ever
capable of.

Appropriate disclaimers in place, lets dig in.

Before you do ANY responsive design, you need to add a meta tag to your page.
All of the bootstrap in the world won’t do you a lick of good if you leave this tag
out.

<meta name=”viewport” content=”width=device-width, initial-scale=1.0”>

What does this tag do?

When Apple first came up with a phone that could actually browse the internet, they
had a huge problem to solve. Namely, how on earth do you browse the internet on
such a tiny screen? The solution? Pan and zoom. Because the iPhone did touch, did
multi-touch and did all of it so well, Apple decided to have the browser treat pages
as if it were a desktop browser. By default, the device will zoom all the way out
on any page so that you can see the entire site. It’s then up to you to double tab
to zoom in. This was an enormously effective strategy, and as it turns out, people
don’t mind tapping and zooming. But we can do better. Using a viewport meta tag
means that your page will be automatically zoomed rather than using the default
width, which is usually 980px wide.

DISCLAIMER

BOOTSTRAP 3

6 of 13

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

MOBILE FIRST
Bootstrap has always had an emphasis on mobile. However, up until version 3,
mobile was a sort of “bolt-on” addition. In fact, the responsive styles were in a
separate stylesheet that you could choose not to include.

As of Bootstrap 3, this has completely changed.

Bootstrap is now mobile first. This means that you are expected to be building a
mobile app first, and special considerations are made to accommodative larger
screens, not the other way around as it has been for quite some time.

This means that there has been a fundamental change in the grid system. If you
knew the grid system in Bootstrap 2, it’s going to require you to reacquaint yourself
with the new “mobile first” Bootstrap 3 grid.

BOOTSTRAP 3 FLUID GRIDS
Bootstrap is still comprised of a container that – well – “contains” rows. Each
row contains 1 – 12 columns that behave differently depending on the CSS class
you choose to apply. You used to be able to choose between a fixed and fluid
container. Now there is only the fluid container. The container centers the content
on the page, providing equal spacing on the left and the right. Containers have a
max width set at various breakpoints inside of Bootstrap.

View Demo In New Window

You can resize that example to see the container change size at different points.
Notice that the grid has a max width of 1140px. Once the width is reduced below
1200px, the grid width is reduced to 940px. Once we break 992px on the window,
the container drops to a max width of 720px. The padding is always at least 15px,
and then set to auto on anything greater than 768px – perfectly centering the
container on the page.

The breakpoints are important to know, because they are going to tell you which
point you grid is going to change it’s layout, based on which column types you
choose. That’s a bit confusing, so let’s just look at the media queries that Bootstrap
has first.

7 of 13

http://jsbin.com/enUrAJ

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

BOOTSTRAP 3 MEDIA QUERIES
Bootstrap divides up the layout into 4 categories, phones – or anything 400 pixels
or larger. Tablets, which are 768 pixels or larger, medium sized devices – enormous
tablets or desktops, and large devices, like giant cinema displays.

/* Extra small devices (phones, up to 480px) */
/* No media query since this is the default in Bootstrap */

/* Small devices (tablets, 768px and up) */
@media (min-width: @screen-sm) { ... }

/* Medium devices (desktops, 992px and up) */
@media (min-width: @screen-md) { ... }

/* Large devices (large desktops, 1200px and up) */
@media (min-width: @screen-lg) { ... }

*Source: [Bootsrap 3 Docs / CSS / Grid system / Media queries](http://
getbootstrap.com/css/#grid-media-queries)*

Based on these media queries, Bootstrap 3 provides you with 4 different types of
columns. Each of these columns resides in a row, and the entire layout resides in a
singular container classed element. You may have a maximum of 12 columns in
any row.

Lets look at the four different column types.

col-xs

The first type is based on the first media query and is targeted at phones. These
columns never stack or break. They are always horizontal and will continue to
collapse as much as the viewport does. They also have 15px of left and right
padding as you can see from the example below.

View Demo In New Window

col-sm

The second type is the the small column, abbreviated col-sm. It stays horizontal
at anything above 768px and breaks below that to a stacked layout.

View Demo In New Window

8 of 13

http://jsbin.com/efoxAz/1
http://jsbin.com/EGIwETe/1

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

col-md

The medium column is stacked at anything below 992px, and is intended for a
smaller desktop layout.

View Demo In New Window

col-lg

The last type is the col-lg column, which is stacked below 1200px. On really big
screens it’s horizontal, but stacked everywhere else.

View Demo In New Window

WHY FOUR COLUMN TYPES

So why do we need for column types? Didn’t the previous 1 responsive column
type cut it? On their own, each of these columns types is relatively identical in it’s
behavior (except the xs columns). You get below a certain resolution and it stacks.
The answer is really choice.

Having four column types gives you control of exactly how your layout behaves
at the 4 major decision points as defined by Bootstrap. If all of your columns
immediately stack at anything below desktop size, you are lumping all mobile
devices in together, and that’s not fair. Many tablets have a resolution that’s not
quite big enough to handle a full desktop site, but a mobile experience feels like
a “Fisher Price” UI. Having four columns enables you to build that UI that is “right
for the resolution”, without having leave anyone out.

OFFSETS

Bootstrap offers some additional classes to help you with precise positioning. You
can pad a column left by a specified number of columns using an offset. Note that
this only works for col-sm-* and larger column types. Offsets are not respected
on the col-xs-* layout.

View Demo In New Window

9 of 13

http://jsbin.com/OnUwOsi/2
http://jsbin.com/oGuQALa/1
http://jsbin.com/oduKObO/1

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

PUSH ME, PULL YOU

Grids also allow you to push and pull columns. This lets you to re-order the columns
based on their class, not their position in the DOM. On first glance, this might
seem like a bad idea, but again, this all about choice. It allows you to reorder your
content based on the viewport size. You may want to do this in the case that you
have certain content that is important and gets pushed below the fold on smaller
screens. For example, you have have a 2 column layout on desktop, you may want
a very important image on the right and the text on the left. However, on mobile,
you want it to stack on top of the text because it’s more important to you to have
the user see the image if nothing else. You shouldn’t have to be forced to put it on
the left for desktop just to achieve a higher stack position on mobile.

Pushing a column moves it right, and pulling it moves it left.

View Demo In New Window

Again, these classes are not available for the smallest col-xs-* sizes. This is
because it is mobile first. Your base design is the smallest, and you only rearrange
content as the screen gets bigger. This is hard to wrap your head around when you
first start with Bootstrap 3, but once it sinks in, things really start to fall into place.

The last thing for us to discuss in terms of the three pieces of responsive design is
responsive media. As far as what Bootstrap covers, this refers to images and not
video. Responsive video is a scenario not covered out-of-the-box by Bootstrap
since it generally requires some JavaScript trickery.

IMAGES
Lets look at the way an image behaves on the web. Usually you know the size of
your images before they are loaded into the page. As a general rule of thumb,
you want to specify their width and height when possible. Otherwise the browser
has no way of knowing what the image dimensions are until the image loads, and
therefore no spot on the page is reserved for it. This will cause your layout to jump.

Have a look at a kitty image which has a fixed size of 400 by 400 pixels. In this
example, I have added a fixed height and width inline on the element. Typically,
your images should have a specified width and height if you know it ahead of time.

FLUID MEDIA

10 of 13

http://jsbin.com/OvUJUva/2

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

Notice though that the image is too large for the viewport, and while the text
wraps in it’s container, the images stays at it’s fixed size.

View Demo In New Window

What we want is for the image to resize itself as it’s container shrinks. As it turns
out, making images fluid is pretty easy. All you have to do is add a width of 100%
and set the height to auto. Done. Bootstrap does this for you by use of the img-
responsive tag. This is another change from Bootstrap 2. All images used to be
responsive when the responsive CSS was added. Now you get to toggle that on
and off with just a class.

Some of the other Bootstrap 3 utility classes for images will make your image
responsive by default. For instance, applying the img-thumbnail class for an
image thumbnail makes your image responsive as well. Using rounded corners or
the img-circle class still requires use of the img-responsive class to have the
image effect and a still get a responsive image.

As of right now, we have discussed how Bootstrap 3 addresses fluid grids, fluid
media and media queries. If it left you there and provided nothing else, this would
be a great framework for navigation and conditionally showing and hiding content.
The Bootstrap 3 creators know that, and have included a bit of responsive design
‘sugar’ to really jump start your app.

COLLAPSIBLE NAVBARS
The responsive navbar is the defining feature of Bootstrap. I’m not going to lie. I
love it. Figuring out how to adapt your main navigation to smaller screens is a giant
obstacle to your success, and Bootstrap effectively negates this with the use of the
collapsible navbar.

That navbar that we all love so much stays much the same in this release. Some
of the classes have changed, but it’s largely the same concept. I think we all know
what a Bootstrap 3 navbar is, and I highly doubt you need to see it again, but here
it is in all it’s glory.

View Demo In New Window

RESPONSIVE SUGAR

11 of 13

http://jsbin.com/AKANIXO/3/
http://jsbin.com/AKANIXO/3/
http://jsbin.com/iXukEci/1

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

A couple of notes on the navbar:

•	 You must have the Bootstrap JavaScript collapse plugin in order for the responsive
features to work

•	 You don’t have to have the navbar at the top! You can fix it to the bottom too.
True story.

•	 You should add a data-role=”navigation” to every navbar if you want
keyboard navigation (accessibility).

•	 You can tweak a navbar so it collapses at a different breakpoint than what
Bootstrap specifies

RESPONSIVE UTILITY CLASSES

Bootstrap still comes with a set of handy classes for toggling the visibility of
elements at its four specified breakpoints. The following example has four icons: a
phone; a tablet; a laptop; and a desktop. Each of these icons is assigned Bootstrap
3 utility classes so that it is only visible at it’s corresponding size. For instance, the
phone icon in the demo looks like this:

<i class=”icon-mobile-phone” .visible-xs></i>

Note that if you specify visible-xs on an element, Bootstrap will automatically
hide it for you at any other breakpoints. If you want it visible again at a breakpoint,
you need to add in a visibility class for that size.

View Demo In New Window

12 of 13

http://getbootstrap.com/components/%23navbar-fixed-bottom
http://jsbin.com/eMolIk/1

TUTORIALS BREAK THE WRIST AND WALK AWAY: RESPONSIVE DESIGN AND BOOTSTRAP 3

After working with Bootstrap 3 and getting over the changes, I really like what they
have done. Bootstrap 2 was incredibly comprehensive. Bootstrap 3 takes that all
encompassing framework and adds in very granular control for laying out elements
at different resolutions.

My favorite feature of all though, is the way that Bootstrap 3 is nudging us towards
building for mobile devices before we build for desktops. It’s subtle, but it will
change the way you think without you even realizing it.

BOOTSTRAP 3 IS A BETTER BOOTSTRAP

Burke Holland
Web Developer

his blog

twitter

share

github

http://a.shinynew.me/
https://twitter.com/burkeholland

appliness(TUTORIALS HTML BOOKMARK / SHARE / TOC

Adding a file display
list to a multiple-file
HTML upload

by Ray Camden

TUTORIALS ADDING A FILE DISPLAY LIST TO A MULTI-FILE UPLOAD HTML CONTROL

by Raymond
Camden

2 of 7

I’m working on something a bit interesting with a multi-file upload control, but while
that is in development, I thought I’d share a quick tip about working with multi-file
upload controls in general.

If you are not clear about what I’m talking about, I simply mean adding the multiple
attribute to the input tag for file uploads. Like so:

<input type=”file” name=”foo” id=”foo” multiple>

In browsers that support it, the user will be able to select multiple files. In browsers
that don’t support it, it still works fine as a file control, but they are limited to one file.
In theory, this is pretty trivial to use, but there’s a UX issue that kind of bugs me. Here
is a screen shot of a form using this control. I’ve selected two files:

Notice something? The user isn’t told what files they selected. Now obviously in a form
this small it isn’t that big of a deal, but in a larger form the user may forget or simply
want to double check before they submit the form. Unfortunately there is no way to
do that. Clicking the Browse button simply opens the file picker again. Surprisingly, IE
handles this the best. It provides a read-only list of what you selected:

“I thought I’d share a quick
tip about working with

multi-file upload controls.”

TUTORIALS ADDING A FILE DISPLAY LIST TO A MULTI-FILE UPLOAD HTML CONTROL

One could use a bit of CSS to make that field a bit larger for sure and easier to
read, but you get the idea. So how can we provide some feedback to the user
about what files they have selected?

First, let’s add a simple change handler to our input field:

document.addEventListener(“DOMContentLoaded”, init, false);
	
function init() {
	 document.querySelector(‘#files’).addEventListener(‘change’, handleFileSelect,
false);
}

Next, let’s write an event handler and see if we can get access to the files property of
the event. Not all browsers support this, but in the ones that do, we can enumerate
over them.

function handleFileSelect(e) {
		
	 if(!e.target.files) return;
		
	 var files = e.target.files;
	 for(var i=0; i < files.length; i++) {
		 var f = files[i];
	 }
		
}

The file object gives us a few properties, but the one we care about is the name.
So let’s create a full demo of this. I’m going to add a little div below my input field
and use it as place to list my files.

<!doctype html>
<html>
<head>
<title>Proper Title</title>
</head>

<body>
	
	 <form id=”myForm” method=”post” enctype=”multipart/form-data”>

 Files: <input type=”file” id=”files” name=”files” multiple>

3 of 7

TUTORIALS ADDING A FILE DISPLAY LIST TO A MULTI-FILE UPLOAD HTML CONTROL

 <div id=”selectedFiles”></div>

 <input type=”submit”>
	 </form>

	 <script>
	 var selDiv = “”;
		
	 document.addEventListener(“DOMContentLoaded”, init, false);
	
	 function init() {
		 document.querySelector(‘#files’).addEventListener(‘change’,
handleFileSelect, false);
		 selDiv = document.querySelector(“#selectedFiles”);
	 }
		
	 function handleFileSelect(e) {
		
		 if(!e.target.files) return;
		
		 selDiv.innerHTML = “”;
		
		 var files = e.target.files;
		 for(var i=0; i<files.length; i++) {
			 var f = files[i];
			
			 selDiv.innerHTML += f.name + “
”;

		 }
	 }
	 </script>
</body>
</html>

Pretty simple, right? You can view an example of this here: http://www.
raymondcamden.com/demos/2013/sep/10/test0A.html. And here is a quick screen
shot in case you are viewing this in a non-compliant browser.

4 of 7

http://www.raymondcamden.com/demos/2013/sep/10/test0A.html
http://www.raymondcamden.com/demos/2013/sep/10/test0A.html

TUTORIALS ADDING A FILE DISPLAY LIST TO A MULTI-FILE UPLOAD HTML CONTROL

Pretty simple, right? Let’s kick it up a notch. Some browsers support FileReader
(MDN Reference), a basic way of reading files on the user system. We could check
for FileReader support and use it to provide image previews. I’ll share the code
first and then explain how it works.

A big thank you to Sime Vidas for pointing out a stupid little bug in my code I
missed on first pass around. I made a classic array/callback bug and didn’t notice it.
I fixed the code and the screen shot, but if you want to see the broken code, view
source on http://www.raymondcamden.com/demos/2013/sep/10/test0orig.html.

<!doctype html>
<html>
<head>
<title>Proper Title</title>
<style>
	 #selectedFiles img {
		 max-width: 125px;
		 max-height: 125px;
		 float: left;
		 margin-bottom:10px;
	 }
</style>
</head>

<body>
	
	 <form id=”myForm” method=”post” enctype=”multipart/form-data”>

 Files: <input type=”file” id=”files” name=”files” multiple
accept=”image/*”>

 <div id=”selectedFiles”></div>

 <input type=”submit”>
	 </form>

	 <script>
	 var selDiv = “”;
		
	 document.addEventListener(“DOMContentLoaded”, init, false);
	
	 function init() {
		 document.querySelector(‘#files’).addEventListener(‘change’,
handleFileSelect, false);
		 selDiv = document.querySelector(“#selectedFiles”);

5 of 7

https://developer.mozilla.org/en-US/docs/Web/API/FileReader
http://www.raymondcamden.com/index.cfm/2013/9/10/Adding-a-file-display-list-to-a-multifile-upload-HTML-control%23c6E612D19-BAD9-A665-957DCD4546E53F41
http://www.raymondcamden.com/demos/2013/sep/10/test0orig.html

TUTORIALS ADDING A FILE DISPLAY LIST TO A MULTI-FILE UPLOAD HTML CONTROL

	 }
		
	 function handleFileSelect(e) {
		
		 if(!e.target.files || !window.FileReader) return;

		 selDiv.innerHTML = “”;
		
		 var files = e.target.files;
		 var filesArr = Array.prototype.slice.call(files);
		 filesArr.forEach(function(f) {
			 var f = files[i];
			 if(!f.type.match(“image.*”)) {
				 return;
			 }

			 var reader = new FileReader();
			 reader.onload = function (e) {
				 var html = “” + f.name +
“<br clear=\”left\”/>”;
				 selDiv.innerHTML += html;				
			 }
			 reader.readAsDataURL(f);
		 });
		
	 }
	 </script>

</body>
</html>

I’ve modified the handleFileSelect code to check for both the files array as well as
FileReader. (Note - I should do this before I even attach the event handler. I just
thought of that.) I’ve updated my input field to say it accepts only images and
added a second check within the event handler. Once we are sure we have an
image, I use the FileReader API to create a DataURL (string) version of the image.
With that I can actually draw the image as a preview.

6 of 7

TUTORIALS ADDING A FILE DISPLAY LIST TO A MULTI-FILE UPLOAD HTML CONTROL

You can view a demo of this here: http://www.raymondcamden.com/demos/2013/
sep/10/test0.html. And again, a screen shot:

Check it out and let me know what you think. As I said, it should be fully backwards
compatible (in that it won’t break) and works well in Chrome, Firefox, IE10, and
Safari.

Ray Camden
Developer Evangelist

his blog

twitter

share

github

http://www.raymondcamden.com/demos/2013/sep/10/test0.html
http://www.raymondcamden.com/demos/2013/sep/10/test0.html
http://www.raymondcamden.com/
https://twitter.com/cfjedimaster
https://github.com/cfjedimaster

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

Understanding
Scope and Context
in JavaScript

by Ryan Morr

TUTORIALS UNDERSTANDING SCOPE AND CONTEXT IN JAVASCRIPT

by Ryan
Morr

2 of 9

This article was originally published on Flippin’ Awesome on August 26, 2013. You can
read it here.

JavaScript’s implementation of scope and context is a unique feature of the language, in
part because it is so flexible. Functions can be adopted for various contexts and scope
can be encapsulated and preserved. These concepts are behind some of the most
powerful design patterns JavaScript has to offer. However, this is also a tremendous
source of confusion amongst developers, and for good reason. The following is a
comprehensive explanation of scope and context in JavaScript, the difference between
them, and how various design patterns make use of them.

The first important thing to clear up is that context and scope are not the same. I
have noticed many developers over the years often confuse the two terms, incorrectly
describing one for the other. To be fair, the terminology has become quite muddled
over the years.

Every function invocation has both a scope and a context associated with it.
Fundamentally, scope is function-based while context is object-based. In other words,
scope pertains to the variable access of a function when it is invoked and is unique to
each invocation. Context is always the value of the this keyword, which is a reference
to the object that “owns” the currently executing code.

CONTEXT VS. SCOPE

“Javascript’s
implementation of scope

and context is a unique
feature.”

http://flippinawesome.org/
http://flippinawesome.org/2013/08/26/understanding-scope-and-context-in-javascript/
http://flippinawesome.org/

TUTORIALS UNDERSTANDING SCOPE AND CONTEXT IN JAVASCRIPT

VARIABLE SCOPE
A variable can be defined in either local or global scope, which establishes the
variables’ accessibility from different scopes during runtime. Any defined global
variable, meaning any variable declared outside of a function body, will live
throughout runtime and can be accessed and altered in any scope. Local variables
exist only within the function body of which they are defined and will have a different
scope for every call of that function. There it is subject for value assignment, retrieval,
and manipulation only within that call and is not accessible outside of that scope.

JavaScript presently does not support block scope which is the ability to define a
variable to the scope of an if statement, switch statement, for loop, or while loop.
This means the variable will not be accessible outside the opening and closing curly
braces of the block. Currently any variables defined inside a block are accessible
outside the block. However, this is soon to change, the let keyword has officially
been added to the ES6 specification. It can be used as an alternative to the var
keyword in order to support the declaration of block scope local variables.

WHAT IS “THIS” CONTEXT
Context is most often determined by how a function is invoked. When a function is
called as a method of an object, this is set to the object the method is called on:

var object = {
 foo: function(){
 alert(this === object);
 }
};

object.foo(); // true

The same principle applies when invoking a function with the new operator to
create an instance of an object. When invoked in this manner, the value of this
within the scope of the function will be set to the newly created instance:

function foo(){
 alert(this);
}

foo() // window
new foo() // foo

3 of 9

TUTORIALS UNDERSTANDING SCOPE AND CONTEXT IN JAVASCRIPT

When called as an unbound function, this will default to the global context or
window object in the browser. However, if the function is executed in strict mode,
the context will default to undefined.

JavaScript is a single threaded language, meaning only one thing can be done at a
time in the browser. When the JavaScript interpreter initially executes code, it first
enters into a global execution context by default. Each invocation of a function
from this point on will result in the creation of a new execution context.

This is where confusion often sets in, the term “execution context” is actually for all
intents and purposes referring to scope and not context as previously discussed. It
is an unfortunate naming convention, however it is the terminology as defined by
the ECMAScript specification, so were kinda stuck with it.

Each time a new execution context is created, it is appended to the top of what
is called a scope chain, sometimes referred to as an execution or call stack. The
browser will always execute the current execution context that is atop the scope
chain. Once completed, it will be removed from the top of the stack and control
will return to the execution context below. For example:

function first(){
 second();
 function second(){
 third();
 function third(){
 fourth();
 function fourth(){
 // do something
 }
 }
 }
}
first();

Running the preceeding code will result in the nested functions being executed all
the way down to the fourth function. At this point the scope chain would be, from
top to bottom: fourth, third, second, first, global. The fourth function would have
access to global variables and any variables defined within the first, second and
third functions as well as the functions themselves. Once the fourth function has

EXECUTION CONTEXT AND SCOPE CHAIN

4 of 9

TUTORIALS UNDERSTANDING SCOPE AND CONTEXT IN JAVASCRIPT

completed execution, it will be removed from the scope chain and execution will
return to the third function. This process continues until all code has completed
executing.

Name conflicts amongst variables between different execution contexts are
resolved by climbing up the scope chain, moving locally to globally. This means
that local variables with the same name as variables higher up the scope chain take
precedence.

An execution context can be divided into a creation and an execution phase. In
the creation phase, the interpreter will first create a variable object (also called
an activation object) that is composed of all the variables, function declarations
and arguments defined inside the execution context. From there the scope chain
is initialized next and the value of this is determined last. Then in the execution
phase, code is interpreted and executed.

To put it simply, each time you attempt to access a variable within a function’s
execution context, the look-up process will always begin with its own variable
object. If the variable is not found in the variable object, the search continues into
the scope chain. It will climb up the scope chain examining the variable object of
every execution context looking for a match to the variable name.

A closure is formed when a nested function is made accessible outside of the function
in which it was defined, so that it may be executed after the outer function has
returned. It maintains access to the local variables, arguments, and inner function
declarations of its outer function. Encapsulation allows us to hide and preserve the
execution context from outside scopes while exposing a public interface and thus
is subject to further manipulation. A simple example of this looks like the following:

function foo(){
 var local = ‘private variable’;
 return function bar(){
 return local;
 }
}

var getLocalVariable = foo();
getLocalVariable() // private variable

CLOSURES

5 of 9

TUTORIALS UNDERSTANDING SCOPE AND CONTEXT IN JAVASCRIPT

One of the most popular types of closures is what is widely known as the module
pattern. It allows you to emulate public, private and privileged members:

var Module = (function(){
 var privateProperty = ‘foo’;

 function privateMethod(args){
 //do something
 }

 return {

 publicProperty: “”,

 publicMethod: function(args){
 //do something
 },

 privilegedMethod: function(args){
 privateMethod(args);
 }
 }
})();

The module acts as if it were a singleton, executed as soon as the compiler interprets
it, hence the opening and closing parenthesis at the end of the function. The only
available members outside of the execution context of the closure are your public
methods and properties located in the return object (Module.publicMethod for
example). However, all private properties and methods will live throughout the life
of the application as the execution context is preserved, meaning variables are
subject to further interaction via the public methods.

6 of 9

TUTORIALS UNDERSTANDING SCOPE AND CONTEXT IN JAVASCRIPT

Another type of closure is what is called an immediately-invoked function expression
(IIFE) which is nothing more than a self-invoked anonymous function executed in
the context of the window:

function(window){

 var a = ‘foo’, b = ‘bar’;

 function private(){
 // do something
 }

 window.Module = {

 public: function(){
 // do something
 }
 };

})(this);

This expression is most useful when attempting to preserve the global namespace
as any variables declared within the function body will be local to the closure but
will still live throughout runtime. This is a popular means of encapsulating source
code for applications and frameworks, typically exposing a single global interface
to interact with.

CALL AND APPLY
These two simple methods, inherent to all functions, allow you to execute any
function in any desired context. The call function requires the arguments to be
listed explicitly while the apply function allows you to provide the arguments as
an array:

function user(first, last, age){
 // do something
}
user.call(window, ‘John’, ‘Doe’, 30);
user.apply(window, [‘John’, ‘Doe’, 30]);

The result of both calls is exactly the same, the user function is invoked in the
context of the window and provided the same three arguments.

7 of 9

TUTORIALS UNDERSTANDING SCOPE AND CONTEXT IN JAVASCRIPT

ECMAScript 5 (ES5) introduced the Function.prototype.bind method that is
used for manipulating context. It returns a new function that is permanently bound
to the first argument of bind regardless of how the function is being used. It works
by using a closure that is responsible for redirecting the call in the appropriate
context. See the following polyfill for unsupported browsers:

if(!(‘bind’ in Function.prototype)){
 Function.prototype.bind = function(){
 var fn = this, context = arguments[0], args = Array.prototype.slice.
call(arguments, 1);
 return function(){
 return fn.apply(context, args);
 }
 }
}

It is commonly used where context is frequently lost: object-orientation and event
handling. This is necessary because the addEventListener method of a node will
always execute the callback in the context of the node the event handler is bound
to, which is the way it should be. However if your employing advanced object-
oriented techniques and require your callback to be a method of an instance, you
will be required to manually adjust the context. This is where bind comes in handy:

function MyClass(){
 this.element = document.createElement(‘div’);
 this.element.addEventListener(‘click’, this.onClick.bind(this), false);
}

MyClass.prototype.onClick = function(e){
 // do something
};

While reviewing the source of the bind function, you may have also noticed what
appears to be a relatively simple line of code involving a method of an Array:

Array.prototype.slice.call(arguments, 1);

What is interesting to note here is that the arguments object is not actually an
array at all, however it is often described as an array-like object much like a nodelist
(anything returned by document.getElementsByTagName()). They contain a
length property and indexed values but they are still not arrays, and subsequently
don’t support any of the native methods of arrays such as slice and push. However,
because of their similar behavior, the methods of Array can be adopted or hijacked,
if you will, and executed in the context of an array-like object, as in the case above.

8 of 9

TUTORIALS UNDERSTANDING SCOPE AND CONTEXT IN JAVASCRIPT

This technique of adopting another object’s methods also applies to object-
orientation when emulating classical inheritance in JavaScript:

MyClass.prototype.init = function(){
 // call the superclass init method in the context of the “MyClass” instance
 MySuperClass.prototype.init.apply(this, arguments);
}

By invoking the method of the superclass (MySuperClass) in the context of an
instance of a subclass (MyClass), we can mimic this powerful design pattern.

It is important to understand these concepts before you begin to approach
advanced design patterns, as scope and context play a significant and fundamental
role in modern JavaScript. Whether were talking about closures, object-orientation
and inheritance, or various native implementations, context and scope play an
important role in all of them. If your goal is to master the JavaScript language and
better understand all it encompasses, then scope and context should be one of
your starting points.

This article was originally published at http://ryanmorr.com/understanding-scope-
and-context-in-javascript/

CONCLUSION

Ryan Morr
Web Developer

his blog

twitter

share

github

http://ryanmorr.com/understanding-scope-and-context-in-javascript/
http://ryanmorr.com/understanding-scope-and-context-in-javascript/
http://ryanmorr.com/
https://github.com/ryanmorr

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

Data in prototype
properties

by Dr. Axel Rauschmayer

TUTORIALS DATA IN PROTOTYPE PROPERTIES

by Dr. Axel
Rauschmayer

2 of 6

This article explains when you should and should not put data in prototype properties.

Prototypes contain properties that are shared by several objects. As such, they work
well for methods. Additionally, with the technique shown below, you can also use
them to provide initial values for instance properties. I’ll later explain why that is not
recommended.

A constructor usually sets instance properties to initial values. If one such value is a
default then you don’t need to create an instance property. You only need a prototype
property with the same name whose value is the default. For example:

 /**
 * Anti-pattern: don’t do this
 *
 * @param data an array with names
 */
 function Names(data) {
 if (data) {
 // There is a parameter
 // => create instance property
 this.data = data;
 }
 }
 Names.prototype.data = [];

The parameter data is optional. If it is missing, the instance does not get a property
data, but inherits Names.prototype.data, instead.

AVOID: PROTOTYPE PROPERTIES WITH INITIAL VALUES
FOR INSTANCE PROPERTIES

“This explains why you
should and should not
put data in prototype

properties.”

TUTORIALS DATA IN PROTOTYPE PROPERTIES

This approach mostly works: You can create an instance n of Names. Getting n.data
reads Names.prototype.data. Setting n.data creates a new own property in n
and preserves the shared default value in the prototype. We only have a problem
if we change the default value (instead of replacing it with a new value):

 > var n1 = new Names();
 > var n2 = new Names();

 > n1.data.push(‘jane’); // change default value
 > n1.data
 [‘jane’]

 > n2.data
 [‘jane’]

Explanation: push() changed the array in Names.prototype.data. Since that
array is shared by all instances without an own property data, n2.data’s initial
value has changed, too.

BEST PRACTICE: DON’T SHARE DEFAULT VALUES

Therefore, it is better to not share default values and to always create new ones:

function Names(data) {
 this.data = data || [];
 }

Obviously, the problem of modifying a shared default value does not arise if that
value is immutable (as all primitives [1] are). But for consistency’s sake, it’s best to
stick to a single way of setting up properties. I also prefer to maintain the usual
separation of concerns [2]: the constructor sets up the instance properties, the
prototype contains the methods.

ECMAScript 6 will make this even more of a best practice, because constructor
parameters can have default values and you can define prototype methods in class
bodies, but not prototype properties with data.

3 of 6

TUTORIALS DATA IN PROTOTYPE PROPERTIES

CREATING INSTANCE PROPERTIES ON DEMAND

Occasionally, creating a property value is an expensive operation (computationally
or storage-wise). Then you can create an instance poperty on demand:

 function Names(data) {
 if (data) this.data = data;
 }
 Names.prototype = {
 constructor: Names,
 get data() {
 // Define, don’t assign [3]
 // => ensures an own property is created
 Object.defineProperty(this, ‘data’, {
 value: [],
 enumerable: true
 // Default – configurable: false, writable: false
 // Set to true if property’s value must be changeable
 });
 return this.data;
 }
 };

(As an aside, we have replaced the original object in Names.prototype, which is
why we need to set up the property constructor [4].)

Obviously, that is quite a bit of work, so you have to be sure it is worth it.

If the same property (same name, same semantics) exists in several prototypes,
it is called polymorphic. Then the result of reading the property via an instance is
dynamically determined via that instance’s prototype. Prototype properties that
are not used polymorphically can be replaced by variables (which better reflects
their non-polymorphic use).

Example: You can store a constant in a prototype property and access it via this.

 function Foo() {}
 Foo.prototype.FACTOR = 42; // primitive value, immutable
 Foo.prototype.compute = function (x) {
 return x * this.FACTOR;
 };

AVOID: NON-POLYMORPHIC PROTOTYPE PROPERTIES

4 of 6

TUTORIALS DATA IN PROTOTYPE PROPERTIES

This constant is not polymorphic. Therefore, you can just as well access it via a
variable:

 // This code should be inside an IIFE [5] or a module
 function Foo() {}
 var FACTOR = 42; // primitive value, immutable
 Foo.prototype.compute = function (x) {
 return x * FACTOR;
 };

The same holds for storing mutable data in non-polymorphic prototype properties.
Mutable prototype properties are difficult to manage. If they are non-polymorphic
then you can at least replace them with variables.

An example of polymorphic prototype properties with immutable data: Tagging
instances of a constructor via prototype properties enables you to tell them apart
from instances of a different constructor.

 function ConstrA() { }
 ConstrA.prototype.TYPE_NAME = ‘ConstrA’;

 function ConstrB() { }
 ConstrB.prototype.TYPE_NAME = ‘ConstrB’;

Thanks to the polymorphic “tag” TYPE_NAME, you can distinguish the instances of
ConstrA and ConstrB even when they cross frames (then instanceof does not
work [6]).

POLYMORPHIC PROTOTYPE PROPERTIES

5 of 6

TUTORIALS DATA IN PROTOTYPE PROPERTIES

[1] Categorizing values in JavaScript
[2] JavaScript inheritance by example
[3] Properties in JavaScript: definition versus assignment
[4] What’s up with the “constructor” property in JavaScript?
[5] JavaScript variable scoping and its pitfalls
[6] Categorizing values in JavaScript [Sect. 2.4 explains that instanceof doesn’t
work if objects cross frames]

REFERENCES

Dr. Axel Rauschmayer

JavaScript Consultant

his blog

twitter

share

github

http://www.2ality.com/2013/01/categorizing-values.html
http://www.2ality.com/2012/01/js-inheritance-by-example.html
http://www.2ality.com/2012/08/property-definition-assignment.html
http://www.2ality.com/2011/06/constructor-property.html
http://www.2ality.com/2011/02/javascript-variable-scoping-and-its.html
http://www.2ality.com/2013/01/categorizing-values.html
http://rauschma.de/
https://twitter.com/rauschma
https://github.com/rauschma

appliness(NEWS BY BRIAN RINALDI BOOKMARK / SHARE / TOC

Creative Loading
Effects

by Mary Lou

Control CSS
Animations with

JavaScript
by

Zach Saucier

Videos as
Backgrouns

 Johnny Simpson

Node.
js

Jumpstart
by Jeremy
Osborne

Playing with the Details/
Summary Tag

 by Raymond Camden

PhoneGap
for Android

 by Holly
Schinsky

ECMAScript
Internationalization

 by Dr.
Rauschmayer

Three.
js

Texture
updating w/

Photoshop CC
by Renaun Erickson

Image
Com-

pression for
web devs
 by Colt
McAnlis

Upload Pix from
PhoneGap to

Amazon
Christophe
Coenraets

appliness(MORE NEWS ON HTTP://FLIPPINAWESOME.ORG/

http://tympanus.net/codrops/2013/09/18/creative-loading-effects/%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%2Btympanus%2B%28Codrops%29%26utm_content%3Dbuffer59a6e%26utm_medium%3Dfacebook
http://css-tricks.com/controlling-css-animations-transitions-javascript/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer85a4d%26utm_medium%3Dfacebook
http://www.inserthtml.com/2013/09/quick-tips-background-videos/%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%2Binserthtml%2B%28InsertHTML%29%26utm_content%3Dbufferf824d%26utm_medium%3Dfacebook
https://thenewcircle.com/s/post/1534/nodejs_tutorial_videos_geolocation_app%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffere8c11%26utm_medium%3Dfacebook
http://www.2ality.com/2013/09/ecmascript-i18n-api.html
http://renaun.com/blog/2013/09/live-three-js-texture-updating-with-photoshop-cc/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer23085%26utm_medium%3Dfacebook
http://www.html5rocks.com/en/tutorials/speed/img-compression/
http://devgirl.org/2013/09/17/how-to-write-a-phonegap-3-0-plugin-for-android/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer73639%26utm_medium%3Dfacebook

