

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

Gradient Maps
for the Web

by Alan Greenblatt

TUTORIALS GRADIENT.JS - GRADIENT MAPS FOR THE WEB

by Alan
Greenblatt

2 of 8

In Photoshop, you can manipulate images in all kinds of ways using gradient map
adjustment layers. You can tint or tone images, easily convert them to black and white,
adjust the midtones, or remap all the colors of an image into your own custom colormap
for some great creative effects.

“What if you could
manipulate HTML images

using gradient map
adjustment layers.”

TUTORIALS GRADIENT.JS - GRADIENT MAPS FOR THE WEB

Now what if you could do that to HTML content as well?

Not simply images. I mean any HTML content: text, video, images, you name it.

gradientmaps.js, a new open source library recently released on GitHub lets you
do just that, very simply. The library depends on the ability to apply SVG filters
to HTML content. That support is currently present only in Chrome and Firefox,
but hopefully the other browsers should be following suit with support in the near
term. I wrote a support matrix that details which browsers support SVG filters on
HTML content, which will help you know which browsers this library can be used
on.

The best way to understand gradient maps is to think in terms of images and linear
gradients. The darker parts of the image get mapped to the left side of the gradient,
while the brighter parts get mapped to the right side of the gradient.

But remember, we’re not just talking about images, we’re talking about HTML
content. The image in this case is what actually gets rendered on the screen, be it
text, images, video, etc.

Let’s look at an example so you’ll see what I’m talking about. Make sure you
are using Chrome or Firefox to view this, so you can see the gradient maps in
action. Be sure to check this out on your desktop: http://blogs.adobe.com/
webplatform/2013/08/06/gradientmaps-js-gradient-maps-for-html/.

On the right you should see an embedded iFrame. You can change the page you
want to display by typing in your own URL and clicking the “Reload IFrame” button.

WHAT ARE GRADIENT MAPS?

GRADIENTMAPS.JS EXAMPLE

3 of 8

https://github.com/awgreenblatt/gradientmaps
https://github.com/awgreenblatt/css-graphics
https://github.com/awgreenblatt/css-graphics
http://blogs.adobe.com/webplatform/2013/08/06/gradientmaps-js-gradient-maps-for-html/
http://blogs.adobe.com/webplatform/2013/08/06/gradientmaps-js-gradient-maps-for-html/

TUTORIALS GRADIENT.JS - GRADIENT MAPS FOR THE WEB

On the left you’ll see a list of gradient map presets, and below that you can enter
your own custom gradient maps and apply them to the iFrame on the right.

If you click on some of the presets, you’ll see that the gradients look an awful lot
like CSS linear gradients, and that is intentional. You can copy/paste directly from
a CSS linear gradient. Everything is the same except there is no initial angle, sides
or corners.

Due to security constraints with iFrames, the Codepen above will not show
embedded Flash video. Instead, if you want to try applying gradient maps to sites
like Adobe TV or YouTube, then you can run the same demo here: http://blattchat.
com/gradient-map-on-an-iframe/. Make sure, if you want to view a YouTube video,
that you use the embed URL. Or, if you want to see a wacky example of animated
gradient maps, try this out.

The API is really easy to use. First, include the gradientmaps library on your page:

<script src=”gradientmaps.min.js”></script>

Now, you can apply a gradient map to any element using the following Javascript:

GradientMaps.applyGradientMap(targetElement, gradientString);

gradientString is specified as a comma separated list of color stops. Each color
stop is a color (specified in RGB, RGBA, HSL, HSLA, a named color or #hex format)
followed by an optional position (specified as either a fraction from 0.0 to 1.0 or a
percentage).

For example, here’s a gradientString that would convert your content to black and
white:

“black, white”

If you want the gradient to start at black, gradually turning to blue at 10%, and
then to full white at 100%, you could do the following:

“black, rgb(0, 0, 255) 10%, white”

USING GRADIENTMAPS.JS

4 of 8

http://docs.webplatform.org/wiki/css/functions/linear-gradient
http://blattchat.com/gradient-map-on-an-iframe/
http://blattchat.com/gradient-map-on-an-iframe/
http://blattchat.com/animating-a-gradient-map/

TUTORIALS GRADIENT.JS - GRADIENT MAPS FOR THE WEB

There are a few assumptions made when no position is specified. These are the
same assumptions as for a CSS linear gradient:

• If the initial color stop has no position, it is assumed to be 0%
• If the final color stop has no position, it is assumed to be 100%
• If a color stop has no position, and it is not the first or last color stop, it is

positioned half way between the previous and next color stop
• If a color stop’s position is less than the previous color stop, it is repositioned to

that of the previously positioned color stop

If you want to remove a gradient map from an element, the following method is
available:

GradientMaps.removeGradientMap(targetElement);

That’s it. Pretty simple and straightforward.

Behind the scenes, gradientmaps.js is making use of SVG filters, specifically the
color matrix and component transfer filter primitives. When applying a gradient
map, first an SVG element is added to the DOM, and a filter with a dynamically
generated ID is added to the SVG:

<svg version=”1.1” width=”0” height=”0”>
 <filter id=”filter-1375725609202”/>
</svg>

A color matrix filter primitive is then used to convert the HTML rendered image
to grayscale, with the darkest colors mapped to black, and the brightest colors
mapped to white.

<svg version=”1.1” width=”0” height=”0”>
 <filter id=”filter-1375725609202”>
 <feColorMatrix type=”matrix”
 values=”0.2126 0.7152 0.0722 0 0 0.2126 0.7152 0.0722
 0 0 0.2126 0.7152 0.0722 0 0 0 0 0 1 0”/>
 </filter>
</svg>

HOW IT WORKS

5 of 8

TUTORIALS GRADIENT.JS - GRADIENT MAPS FOR THE WEB

A component transfer filter primitive then takes the output from the previous filter
primitive to convert the grayscale intensities to the requested gradient map.

<svg version=”1.1” width=”0” height=”0”>
 <filter id=”filter-1375725609202”>
 <feColorMatrix type=”matrix”
 values=”0.2126 0.7152 0.0722 0 0 0.2126 0.7152 0.0722
 0 0 0.2126 0.7152 0.0722 0 0 0 0 0 1 0”/>
 <feComponentTransfer color-interpolation-filters=”sRGB”>
 <feFuncR type=”table” tableValues=”1 0 0”/>
 <feFuncG type=”table” tableValues=”0 1 0”/>
 <feFuncB type=”table” tableValues=”0 0 1”/>
 <feFuncA type=”table” tableValues=”1 1 1”/>
 </feComponentTransfer>
 </filter>
</svg>

Calculating the actual values for the component transfer primitive’s individual
channel transfer functions is where the meat of the gradientmap library lies.

The component transfer filter primitive allows you to remap the individual color
channels using transfer functions (feFuncR, feFuncG, feFuncB and feFuncA for
RGBA respectively). In our case we are using table type transfer functions. There
are different types of transfer functions that you can read about in the filter effects
specification. With table type transfer functions, the function is defined through
linear interpolation of the values specified in the tableValues attribute.

In the example above,the red transfer function has its tableValues set to:

1 0 0

The table values will be evenly distributed, meaning the first value will map reds of
value 0.0, the last value will map reds of 1.0 and any stops in between will be evenly
distributed. In the case above, the middle 0 will thus map reds of value 0.5. In this
example, the darkest reds will get mapped to full red, and any reds with a value of
0.5 or more will get mapped so they have no red.

The problem of course is that we want to be able to add values at arbitrary positions
in the gradient, not just at evenly distributed positions. The library takes care of
that for you, figuring out what set of evenly distributed table values can be used
with the individual channel transfer functions to achieve the desired effect.

6 of 8

http://www.w3.org/TR/SVG11/filters.html%23feComponentTransferElement
http://www.w3.org/TR/SVG11/filters.html%23feComponentTransferElement

TUTORIALS GRADIENT.JS - GRADIENT MAPS FOR THE WEB

For example, if you wanted to start at black, go to blue at 10% and then end on
white:

the library would calculate table values for the transfer function table values at 0%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%:

<svg version=”1.1” width=”0” height=”0”>
 <filter id=”filter-1375725609202”>
 <feColorMatrix type=”matrix”
 values=”0.2126 0.7152 0.0722 0 0 0.2126 0.7152 0.0722
 0 0 0.2126 0.7152 0.0722 0 0 0 0 0 1 0”/>
 <feComponentTransfer color-interpolation-filters=”sRGB”>
 <feFuncR type=”table”
 tableValues=”0 0 0.1111111111111111 0.2222222222222222
0.3333333333333333
 0.4444444444444444 0.5555555555555555
0.6666666666666666
 0.7777777777777778 0.888888888888889 1”/>
 <feFuncG type=”table”
 tableValues=”0 0 0.1111111111111111 0.2222222222222222
0.3333333333333333
 0.4444444444444444 0.5555555555555555
0.6666666666666666
 0.7777777777777778 0.888888888888889 1”/>
 <feFuncB type=”table” tableValues=”0 1 1 1 1 1 1 1 1 1 1”/>
 <feFuncA type=”table” tableValues=”1 1 1 1 1 1 1 1 1 1 1”/>
 </feComponentTransfer>
 </filter>
</svg>

Finally, the target element has its CSS modified, setting -webkit-filter and filter to
point to the dynamically created SVG filter:

-webkit-filter: url(#1375725609202);
 filter: url(#1375725609202);

When modifying an existing gradient map, the library will look for the existing filter
that is applied to that element, and modify it in place so you don’t end up with
zombie filters in your DOM. When removing a filter, the CSS filter attributes will be
reset and the filter will be removed from the SVG element. If the SVG has no other
filter children, it will be removed as well, ideally keeping everything nice and tidy.

7 of 8

TUTORIALS GRADIENT.JS - GRADIENT MAPS FOR THE WEB

I’d like to the thank the Adobe Web engine team for originally pointing me down
this path and for their support, both technically and legally.

You can find the all of the code and examples on my GitHub repository:

https://github.com/awgreenblatt/gradientmaps

By all means, let me know if you find problems or think there are some features to
add. Even better, make the changes yourself and do a pull request. I’d love to get
other’s input on making this better.

I can best be reached on Twitter at @agreenblatt. That’s also a great way to keep
up with any major updates or improvements to the library. You can also read about
some of my other technical ramblings at http://blattchat.com. Please do let me
know if you do anything interesting with the library.

Enjoy!

SUMMARY

Alan Greenblatt
Creative Cloud Evangelist

his blog

twitter

share

github

https://github.com/awgreenblatt/gradientmaps
https://twitter.com/agreenblatt
http://blattchat.com/
http://blattchat.com/
https://twitter.com/agreenblatt
https://github.com/awgreenblatt

appliness(TUTORIALS CSS BOOKMARK / SHARE / TOC

Writing Better
CSS

by Mathew Carella

TUTORIALS WRITING BETTER CSS

by Mathew
Carella

2 of 8

This article first appeared on the Flippin’ Awesome website on August 12, 2013. You
can read it here.

Writing good CSS code can speed up page rendering. Essentially, the fewer rules
the engine has to evaluate the better. MDN groups CSS selectors in four primary
categories, and these actually follow the order of how efficient they are:

1. ID Rules
2. Class Rules
3. Tag Rules
4. Universal Rules

The efficiency is generally quote from Even Faster Websites by Steve Souders which
was published in 2009. Souders list is more detailed, though, and you can find the full
list referenced here. You can find more details in Google’s best practices for efficient
CSS selectors.

In this article I wanted to share some simple examples and guidelines that I use for
writing efficient and performant CSS. This is inspired by, and follows a similar format
to, MDN’s guide to writing efficient CSS.

“Essentially, the fewer the
rules the engine has to

evaluate the better.”

http://flippinawesome.org/2013/08/12/writing-better-css/
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
http://csswizardry.com/2011/09/writing-efficient-css-selectors/
http://csswizardry.com/2011/09/writing-efficient-css-selectors/
https://developers.google.com/speed/docs/best-practices/rendering%23UseEfficientCSSSelectors
https://developers.google.com/speed/docs/best-practices/rendering%23UseEfficientCSSSelectors
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
http://flippinawesome.org/

TUTORIALS WRITING BETTER CSS

As a general rule, don’t supply more information than is necessary.

// bad
ul#someid {..}
.menu#otherid{..}

// good
#someid {..}
#otherid {..}

Not only is this not performant but it is fragile, as changes to the HTML can easily
break your CSS.

// very bad
html div tr td {..}

This is similar to overqualifying and it is preferable to simply create a new CSS class
selector.

// bad
.menu.left.icon {..}

// good
.menu-left-icon {..}

DON’T OVERQUALIFY

DESCENDANT SELECTORS ARE THE WORST

AVOID CHAINING

3 of 8

TUTORIALS WRITING BETTER CSS

Let’s imagine we have a DOM like this:

<ul id=”navigator”>
 Twitter
 Facebook
 Dribbble

Following upon the prior rules…

// bad
#navigator li a {..}

// good
#navigator {..}

Whenever possible, use the shorthand syntax.

// bad
.someclass {
 padding-top: 20px;
 padding-bottom: 20px;
 padding-left: 10px;
 padding-right: 10px;
 background: #000;
 background-image: url(../imgs/carrot.png);
 background-position: bottom;
 background-repeat: repeat-x;
}

// good
.someclass {
 padding: 20px 10px 20px 10px;
 background: #000 url(../imgs/carrot.png) repeat-x bottom;
}

STAY KISS

USE A COMPACT SYNTAX

4 of 8

TUTORIALS WRITING BETTER CSS

// bad
.someclass table tr.otherclass td.somerule {..}

//good
.someclass .otherclass td.somerule {..}

Whenever you can, combine duplicate rules.

// bad

.someclass {
 color: red;
 background: blue;
 font-size: 15px;
}

.otherclass {
 color: red;
 background: blue;
 font-size: 15px;
}

// good

.someclass, .otherclass {
 color: red;
 background: blue;
 font-size: 15px;
}

AVOID NEEDLESS NAMESPACING

AVOID NEEDLESS DUPLICATION

5 of 8

TUTORIALS WRITING BETTER CSS

Following on the prior rule, you can combine duplicate rules but still differentiate
classes.

// bad
.someclass {
 color: red;
 background: blue;
 height: 150px;
 width: 150px;
 font-size: 16px;
}

.otherclass {
 color: red;
 background: blue;
 height: 150px;
 width: 150px;
 font-size: 8px;
}

// good
.someclass, .otherclass {
 color: red;
 background: blue;
 height: 150px;
 width: 150px;
}

.someclass {
 font-size: 16px;
}

.otherclass {
 font-size: 8px;
}

CONDENSE RULES WHEN YOU CAN

6 of 8

TUTORIALS WRITING BETTER CSS

It is preferable to use semantic names. A good CSS class name should describe
what it is about.

When possible, you should instead use good qualified selectors.

While there are a number of common ways to order CSS properties, this is a
commonly used one that I follow.

.someclass {
 /* Positioning */
 /* Display & Box Model */
 /* Background and typography styles */
 /* Transitions */
 /* Other */
}

Code that is easier to read is easier to maintain. Here’s the format I follow:

// bad
.someclass-a, .someclass-b, .someclass-c, .someclass-d {
 ...
}

// good
.someclass-a,
.someclass-b,
.someclass-c,
.someclass-d {
 ...

AVOID UNCLEAR NAMING CONVENTIONS

AVOID !IMPORTANTS

FOLLOW A STANDARD DECLARATION ORDER

FORMAT YOUR CODE PROPERLY

7 of 8

http://css-tricks.com/new-poll-how-order-css-properties/

TUTORIALS WRITING BETTER CSS

}

// good practice
.someclass {
 background-image:
 linear-gradient(#000, #ccc),
 linear-gradient(#ccc, #ddd);
 box-shadow:
 2px 2px 2px #000,
 1px 4px 1px 1px #ddd inset;
}

Obviously these are just a handful of rules that I try to follow in my own CSS to
make it both more efficient and easier to maintain. If you want to read more on
the topic, I suggest reading Writing Efficient CSS on MDN and Google’s guide to
optimize browser rendering.

This article was originally published at http://blog.mathewdesign.com/2013/07/04/
writing-performant-and-quality-css/

WHERE TO GO FROM HERE

Mathew Carella
Web Developer

his blog

twitter

share

github

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
https://developers.google.com/speed/docs/best-practices/rendering%23UseEfficientCSSSelectors
http://blog.mathewdesign.com/2013/07/04/writing-performant-and-quality-css/
http://blog.mathewdesign.com/2013/07/04/writing-performant-and-quality-css/
http://www.mathewdesign.com/
http://www.mathewdesign.com/
https://twitter.com/MathewDurden

appliness(TUTORIALS SVG BOOKMARK / SHARE / TOC

SVG Filters
on Text

by Chris Scott

TUTORIALS SVG FILTERS ON TEXT

by Chris
Scott

2 of 5

This article appeared as a guest post on the CSS-Tricks website on August 9, 2013. You
can read it here.

There has been a general trend in Web development, for some years now, away from
using images in designs. Only a few years ago software companies would favour using
an image of a rounded corner as the best “cross-browser” solution; the CSS attribute
border-radius has made that technique seem very antiquated today. Titles are
another example of this trend, where in the past one may have generated a fancy
banner title in Photoshop and used an image to show it on the page. These days we
have web fonts at our disposal and CSS3 to help us achieve shadows and other effects.
These solutions load much faster, scale better and are more accessible and semantically
correct. But there is even more we can do!

SVG with Filter Effects have a lot of potential for complex text styling. Take a look at
this example:

That line is created using SVG Filter Effects. It’s just text. You can select it with your
cursor. Search engines can index it. It will scale in size without losing quality. To boot,
it takes very little time to download. You can achieve a whole lot more, too, the scope
for creativity with Filter Effects is huge. The example was created with a library called
Raphael.js and an extension I wrote for it. This article talks about the rationale for
developing the extension and shows - in brief - how it can be used.

SVG FILTERS

“SVG with Filter Effects
have a lot of potential for

complex text styling.”

http://css-tricks.com/svg-filters-on-text/
http://css-tricks.com/using-svg/
http://css-tricks.com/

TUTORIALS SVG FILTERS ON TEXT

Apparently, only 0.1% of Web pages use SVG graphics. If that statistic is anything
to go by, there’s a good chance that you are probably not using SVG on a regular
basis. Why is SVG used so unpopular? It’s only a guess, but the reason I didn’t get
into SVG (until I absolutely had to) was its learning curve: SVG is an XML vocabulary
and is, I think, extremely technical (matrix multiplication for colour shifts, anyone?).
The way I got into SVG was through Raphael.js, a JavaScript Library for creating
vector drawings. Because it’s a JavaScript library it felt fairly familiar, all of the
complexity was abstracted away. Before long I was creating complex graphics like
a pro.

Raphael has a shortcoming though: no support for Filter Effects. I remember
one of my customers specifically requesting a drop shadow for bubbles in a data
visualization which was interactive and animated. The request stumped me for a
while as I bumped into this limit of Raphael. For that project I wrote a very specific
extension to Raphael for handling drop shadows. But the same complexity that
had initially put me off SVG was back and worse than ever. Make no mistake, Filter
Effects are very, very technical.

So, after that project, I set about building a more full-featured library to make Filter
Effects as easy to apply as Raphael makes drawing shapes.

Introducing Filter Effects for Raphael!

Here’s how to use it:

First, the HTML. This bit is dead simple, just a div with an id:

<div id=”title-container”></div>

Everything else is done in JavaScript.

To start an SVG drawing with Raphael you create a “paper” by referencing the id
of the container element:

var paper = Raphael(“title-container”);

FILTER EFFECTS FOR RAPHAEL

3 of 5

http://w3techs.com/technologies/details/im-svg/all/all
http://raphaeljs.com/
http://chrismichaelscott.github.io/fraphael/

TUTORIALS SVG FILTERS ON TEXT

Now to do some drawing. This example creates some text and sets some of the
style attributes:

// The first two arguments are the origin of the text
var title = paper.text(0, 30, “Filters are ice cold”);
title.attr({
“fill”: “MintCream”,
“font-family”: “Butcherman”,
“font-size”: “54px”,
“text-anchor”: “start”
});

Now for some effects! The simplest things you can do are shadows, blurring,
lighting, embossing and colour shifting. Those require very little coding. Let’s try
the emboss effect. Add to the JavaScript:

title.emboss();

You can chain effects, so applying a shadow afterwards is straightforward:

title.emboss().shadow();

Pretty cool, huh? You can take this much further if you want, by creating your own
filters. The SVG spec lists (lower level) filter effects which can be combined to
create all kinds of filters (convulsion matrices, in particular, can be used for a vast
number of operations).

This demo has the full code and some other examples of different effects that can
be achieved:

4 of 5

TUTORIALS SVG FILTERS ON TEXT

What are the downsides to SVG? Well - aside from the pros and cons of vector
over raster (like canvas) - there are a couple I can think of:

• Browser support - You may not be surprised to learn that the graphical trickery
discussed here is not supported in older versions of IE, 10 only. SVG itself will
render in IE9, just without the effects. Firefox, Chrome and Opera have supported
Filter Effects for ages

• Semantics - Some may have reservations about the semantic validity of using
SVG in documents, certainly the svg tag doesn’t give any clue as to it’s content;
you can use a sensible parent, though

Hopefully this piece has given you a good idea of what filter effects can do and
how Filter Effects for Raphael can do them. Check out the project page on Github
for more details. Thanks for reading!

SHORTCOMINGS

WRAPPING UP

Chris Scott
Developer & Entrepeneur

his blog

twitter

share

github

http://caniuse.com/svg-filters
http://chrismichaelscott.github.io/fraphael/
http://chrisscott.org/
https://twitter.com/_chris_scott_
https://github.com/chrismichaelscott

appliness(TUTORIALS PHONEGAP BOOKMARK / SHARE / TOC

Commercial
PhoneGap in the Wild

by Sel-Vin Kuik

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

by Sel-Vin
Kuik

2 of 11

Working in development, you relish problem solving and finding the optimal platform
on which to deploy your project. Choosing unwisely, especially as a startup digital
agency, could cost you dearly. In September 2012, when SMACK (http://smackagency.
com) won its first mobile app project, it was crucial that we got the platform right. The
right technology, to be able to deliver the right functionality efficiently and, of course,
at the right price to meet budgets.

Traditionally, although theoretically the better solution, hybrid apps in practice were
the poor relation to their native counterparts. However, things were starting to change
- the question was, was it enough to choose hybrid, and would the decision pay off.

Our client first came to us
with the ground-breaking
idea for a free, money-
saving website through
which users would be
able to access offers and
membership benefits for
organisations, venues
and retailers across the
UK. With thousands of
deals already logged
in the database, a
number which rapidly
grew throughout
development and past
launch, it was imperative
that the system was
scalable to process large
quantities of data within
minimal time.

THE PROJECT

“Choosing unwisely,
especially as a startup

digital agency, could cost
you dearly.”

http://smackagency.com/
http://smackagency.com/

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

The mobile app was an essential addition to the website allowing users to access
their profiles on the go. Using live geolocation based functionality, push notifications
could be configured to alert of any benefits coming in to vicinity as the user moves
around.

When it boiled down to it,
choosing PhoneGap wasn’t an
instinctive decision. PhoneGap
was the exciting upstart I had
had my eye on since I first came
across it in 2010. However, the
jury was still out as far as speed
and economies were concerned.
Coming to it from a web
background, I strongly supported
the single-source code base
offered. However, on the hybrid
vs. native argument, I remained
firmly on the native side of the
fence. Why? Because to deliver
commercially viable apps it has to
be considered that there is a huge
variety of devices on the market.
Until very recently, all but the top-
end devices out there suffered
from poor HTML5 support and
sluggish JavaScript engines. This
gave native the upper hand for
both performance and audience
reach, preventing me from even
considering deploying a hybrid
solution to a full-scale project.

HYBRID VS. NATIVE

3 of 11

Swipe through
the screens

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

When my client first approached me, devices such as the Nexus 4 and iPhone 5
were being unveiled. For Android, the Nexus 4 set a new milestone for mobile
processing power, and the improvement of JavaScripting on the iPhone 5 created
a benchmark above and beyond that seen before. For developers, PhoneGap was
leading the way for hybrid platforms with a strong, growing community and a wide
variety of plugin support to access native functionality. For me, that provided the
turning point - hybrid applications had finally become a serious contender to native
apps, and my decision to develop with PhoneGap was made.

When it comes to the app itself, it is worth taking a step back to outline the app
back-end. The structure is fairly traditional, the data is stored server-side in a MySQL
database, with a Sphinx (http://sphinxsearch.com/) search engine layer on top for
optimised indexing. Practically all of the data stored can be represented with
latitude and longitude coordinates for it to be mapped. Yii framework (http://www.
yiiframework.com/) powered PHP controls the logic.

THE TURNING POINT

LET’S GET TECHNICAL

4 of 11

http://sphinxsearch.com/
http://www.yiiframework.com/
http://www.yiiframework.com/

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

On the front-end, at the surface jQuery (http://jquery.com/) was used to do a lot
of the heavy-lifting in terms of DOM manipulation and Ajax calls. I used parsley.js
(http://parsleyjs.org/) to build a modular validation system, and mustache.js (http://
mustache.github.io/) for simple repetitive templating within each page of the app.
To maintain as much compatibility towards older devices, the use of transitions
and animations was kept to an absolute minimum. Although it is possible, I would
advise that the rule of thumb for any developer would be to always use CSS3 over
JavaScript in this case.

You can see a sample of the JavaScript structure, which outlines handling the page
transitions seamlessly with PhoneGap and jQuery.

/**
 * Page constructor
 */
$(document).bind(‘pageshow’, function(event, ui) {

 var $content = $(‘.ui-page-active’);

// Check if page content has already been loaded previously
 if(!$content.hasClass(‘initialised’)) {

 // Show a loading spinner, initially hidden
 $.mobile.loading(‘show’, {
 text: ‘Your connection is wonky.’,
 textVisible: false
 });

 // Dynamic page initialisation, based on content ID
 eval(‘app.’ + $content.attr(‘id’) + ‘.init();’);

 }

});

/**
 * Page destructor
 */
$(document).bind(‘pagehide’, function(event, ui) {

app.cleanUp();

});

/**

5 of 11

http://jquery.com/
http://parsleyjs.org/
http://mustache.github.io/
http://mustache.github.io/

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

 * Page ready
 */
$(document).on(‘pageready’, function() {

 // Hide loader
 $.mobile.loading(‘hide’);

 // Flag page as initialised
 $(‘.ui-page-active’).addClass(‘initialised’);

});

/**
 * Global Ajax error handler
 * Hooks in to jQuery, if connection is ever lost during data population
 * the loading spinner is updated to notify the user
 */
$(document).ajaxError(function(event, jqXHR, ajaxSettings, thrownError) {

 $(‘.ui-loader’).removeClass(‘ui-loader-default’).addClass(‘ui-loader-
verbose’);

});

/**
 * Example page
 */
app.examplePage = {};
app.examplePage.init = function() {

 // Initialise page, setup interactions, populate data over Ajax

 // Trigger page ready when done
 $(document).trigger(‘pageready’);

};

6 of 11

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

Digging deeper, it gets a lot more interesting. When the app is booted it taps in
to PhoneGap’s location listener to track the device position. As PhoneGap uses
the HTML5 geolocation specification this is exceptionally easy. Even location
tracking when the app is in the background is simply achieved by switching a flag
in either ADT or Xcode, functionality often considered impossible across the web.
PhoneGap actually makes this remarkably simple, and this was a key requirement
for the iMember app.

Once the location has been obtained, the app pings the server for relevant points
nearby. I found this traditional approach to be much more effective than using
geofencing, in our case only due to the sheer volume of positional data being
stored in the database. The implementation of Sphinx makes light work of searching
through this large data collection to return instant results.

JAVASCRIPT

/**
 * Device Ready
 */
document.addEventListener(‘deviceready’, function() {

 // Listen for location changes
 navigator.geolocation.watchPosition(
 function(position) {

 // Success function, send the user location update to the server

 }
);

}, true);

THE NITTY GRITTY

7 of 11

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

PHP

function updateLocation($user, $latitude, $longitude)
{

 // Find the user’s current location
 $oldLocation = $user->getCurrentLocation();

// Update the user location
 $user->updateLocation($latitude, $longitude);

 // Use the Haversine formula to calculate if the user has moved a significant
distance
 if(CMath::haversine(
$oldLocation->latitude, $oldLocation->longitude,
$latitude, $longitude
) < 0.1)
 return false;

 // Use Haversine/Sphinx to search the local area for relevant benefits
 if($benefits = $user->nearbyBenefits($latitude, $longitude))
 {
 // Send push notifications
 }
}

Through the use of PhoneGap plugins, iMember further taps into functionality on
device. For when the user is on the move, the capability to register and receive
push notifications was developed using PushPlugin. As location data is being sent
to the server, the changes in position are monitored. If the user has moved to a
new location where new points of interest are available, a notification is sent. There
is a good chunk of back-end functionality here to register the device, store the
location and send the notification. I opted for a bespoke build of our notification
server, although it is outside the scope of this article, it is much simpler than it
sounds and there are some great references online. There are also a good number
of paid services if you don’t want the bother of managing a notification server.

For iOS, PushPlugin and plugins in general require quite a bit of work to configure
within Xcode and the iOS Developer Centre. This can be quite daunting to a hybrid
developer with little native experience, but plugin documentation is continuously
updated, and it often comes down to a case of meticulously following instructions.
For those of you working with Android however, you’ll be pleased to know that
Google makes the whole process considerably simpler.

8 of 11

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

Probably one of the more deceiving complex pieces of functionality that had to be
included was tapping in to the social functionality on device. For a web developer,
it’s not simply the case of copying in your favourite social widget and hey presto as
you might expect. However, again a PhoneGap plugin was available to assist, and
for this we used the ShareKit.

Again, the setup for iOS can be slightly more complicated than Android, especially
if you are looking to make use of the recent updates to social in iOS 6 yet still
maintain iOS 5 compatibility. It is on this note that although PhoneGap can provide
a single-source principle, it is not the case that writing one piece of code will allow
deployment across all devices. Each OS has it nuances, and this should be handled
by splitting out plugin functionality in to modules for devices and even device
versions. Good code organisation and namespacing cannot be emphasised enough,
I included a global switch for devices, so although common functionality can be
grouped together, device-specific alterations can easily be separated out.

var IS_IOS = true;

/**
 * Device Ready
 */
document.addEventListener(‘deviceready’, function() {

 // Set global variable to target platforms independently
 var platform = device.platform.toLowerCase();

if(platform.indexOf(‘android’) > -1)
 IS_IOS = false;

 // Register for push notifications
app.pushNotifications.register();

}, true);

/**
 * Push Notifications
 */
app.pushNotifications = {};
app.pushNotifications.register = function() {

 // Android
 if(IS_IOS)
 window.plugins.pushNotification.register({
 ecb: ‘app.pushNotifications.ios’
 });

9 of 11

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

 // iOS
 else
 window.plugins.pushNotification.register({
 ecb: ‘app.pushNotifications.ios’
 });
};

app.pushNotifications.android = function(event) {

 // Handle push notifications on Android

};

app.pushNotifications.ios = function(event) {

 // Handle push notifications on iOS

};

One other observation when developing with PhoneGap plugins, or indeed any
third party plugins for a rapidly evolving platform, is versioning and compatibility.
Especially when you begin to mix multiple plugins, unless you have the resource
to contribute to the open-source development, it is often the case that an older
version of PhoneGap needs to be used to cater across the board.

In order to deliver successful apps, it is crucial that the foundations can perform
to 100%. Hybrid apps remain the most hotly discussed subjects when it comes to
mobile development, however the decision to deploy with hybrid hasn’t always
come easily in the past.

Hopefully, reading about my experience will help shed some light on the possibilities
that PhoneGap can offer. Maybe it’ll even help convince those in “camp native”
that there is another way in which to build full-featured, scalable commercial apps.
I’ve found that PhoneGap can simplify complex functionality, thus optimising the
build process.

As the number of hybrid apps grows, so will the community and support, and in
turn the requirement for device capability. At SMACK, development is already

IN CONCLUSION

10 of 11

TUTORIALS COMMERCIAL PHONEGAP IN THE WILD

fully underway to deliver a commercial hybrid HTML5 game, and my next personal
challenge is to follow this with a commercial scale augmented reality hybrid app.
The golden time for hybrid is dawning, and as PhoneGap improves and ideas and
notions develop, there’s no better time to start developing a hybrid app.

Sel-Vin Kuik is the technical director at SMACK, a digital creative agency developing
web apps, mobile apps and digital magazines.

BIO

Sel-Vin Kuik
Technical Director

his blog

twitter

share

github

http://smackagency.com
https://twitter.com/SMACKagency

appliness(INTERVIEW VITALY FRIEDMAN BOOKMARK / SHARE / TOC

appliness(INTERVIEW VITALY FRIEDMAN BOOKMARK / SHARE / TOC

INTERVIEW

Vitaly Friedman

by Maile Valentine
photos Oliver Kern
OliverKern Fotografie

http://www.okdv.de/

3 of 10

APPLINESS: Hello Vitaly, we’re big
fans of your work! Thank you for
spending time with Appliness. Can
you tell us a bit about yourself?

Thank you so much for inviting me. It’s
my honor and pleasure to be featured
in Appliness — I’ve been reading it for
a while now. Well, I am one of the guys
who has been doing lots of different
things on the Web throughout all
these years. I jumped into Web design
when I studied computer science and
mathematics at the university and then,
at some point, I realized I am a pretty
mediocre developer which I was why
I started doing something different. I
was always fascinated by typography
and design, so I explored this direction
instead. At that time I didn’t have any
money and when I was asked about a
couple of Web design projects at the
university, I jumped into this area with
both feet.

I used to design table-based websites
when I was a kid, back in 1999, but
then I was disillusioned by what I saw
as an incredibly time-consuming and
impractical craft. I did create a couple
of websites back then, and I also
experimented with Shockwave and
VRML at some point. This is also the
point when I started writing about the
Web and my experiences with it.

It was the time when everybody tried
to figure out what to do with the Web,
but the most important thing for me
was the fact that I could publishing
anything online and people across
the globe could access it. It was a
fascinating thought. Actually, it still
is. I often think that this is one of the
reasons why I still do my work today.

Smashing Magazine features articles
on the latest techniques and tools
for modern web design. Based on
your experience as a web designer
and your exposure to the latest
technologies, what are some of the
tools you are most excited about?

To be honest, I rarely get excited
about tools; nor am I interested in
trends or exciting visual treatments.
I love clever solutions to hard design
problems. I love seeing CSS trickery
and innovative, smart designs. This
is why I am particularly interested in
responsive Web design patterns as
well as performance optimization
techniques which are derived from
suboptimal real-life projects. Usually
our solutions have to be pragmatic
and work well within given project
constraints. That’s a gateway to
smart, unusual design choices, in my
opinion.

IN
T

R
O

D
U

C
T

IO
N

INTERVIEW VITALY FRIEDMAN

http://www.smashingmagazine.com/

4 of 10

When I think about new techniques,
I tend to think about Atomic Design
as proposed by Brad Frost as well as
general design of websites as systems
rather than pages. I am also curious
of how we can further improve the
overall user experience of websites
by using offline storage technologies
and prefetching content in a smart
way. I am very curious to see how
our deliverables and our project
workflow are changing (and will
change in the future) as responsive
Web design will become a default for
every project. Overall, processes and
workflow fascinate me. The insights
you can learn from them are much
more profound and empowering than
any standalone tool could provide.

IN
T

R
O

D
U

C
T

IO
N

INTERVIEW VITALY FRIEDMAN

http://bradfrostweb.com/blog/post/atomic-web-design/
https://twitter.com/brad_frost

VITALY FRIEDMAN
SmaSHinG maGaZine

What were some of the tools or
frameworks you and your team used
to redesign Smashing Magazine for
a responsive design?

Well, to be honest, we didn’t use any
framework at all — the whole site was
built from scratch. I’ve never been a
big fan of frameworks actually, and it
wasn’t necessary in our case because

the actual design was quite… well,
straightforward. We worked in the
Chrome Devtools all the time and we
played around with CSS values and
properties. At that point we didn’t
really have any tools that would help us
with debugging and maintenance or
actual testing of media queries, so we
kept resizing the window all the time.

5 of 10

INTERVIEW VITALY FRIEDMAN

6 of 10

We also used the asterisk technique
as proposed by Trent Walton (http://
trentwalton.com/2012/06/19/fluid-
type/) but that was it, actually.
We didn’t use Photoshop at all, and
most experiments were done directly
in the browser.

Smashing Magazine started as a
side project and grew to be a very
successful, full-time endeavor. Are
there any plans for expanding your
scope of products or services? More
book publishing in the future?

Well, personally I love challenges. I
tend to explore directions I’ve never
thought of or never had experience
in. This is how eBooks and printed
books and conferences and workshops
came to be. Indeed we are working
on a variety of books at the moment,
but I think I’ve already found a new
challenge that I’d love us to take on in
the nearest future. And no, that’s not
what you are expecting. :-)

Smashing Magazine gained
popularity very quickly. What did
it offer that your readers had been
missing?

I think that our readers discovered
that we emphasized the importance
of practical, useful articles that always
delivered on the promise of providing
value to the reader. That’s what has
become our signature, so to say. It
hasn’t changed over all these years at
all, only the form in which content is
presented and how it double checked
before it goes live, has changed

significantly. I think that Smashing
Magazine appeared at the right time
in the right niche and so popular
articles helped us grow over time and
gain more and more readers over the
years.

Can you tell us about the Smashing
Conference you organize? What is
the content of the conference? It’s
goal? Are you considering any pure
online events?

When we started planning the Smashing
Conference (www.smashingconf.
com), we had a clear idea of what
the conference should feel like and
what its purpose should be. It can’t
be a generic, quick-paced, ordinary
event. It has to be special, different,
valuable and meaningful. It has to
be… smashing in every possible way.
At its essence, the SmashingConf is a
very hands-on event, with thorough
discussions about how we work, what
strategies and techniques we use and
how we can use them intelligently.
Every talk should deliver value and
should serve a purpose; it should
be helpful and remarkable, it should
challenge, share and inspire. If all
pieces of the puzzle come together
nicely, the conference should become
a memorable community event, with
practical insights and takeaways for
speakers and guests alike. It should
be an event that everyone remembers
and looks forward to again next year.
We wanted to apply the very principles,
values and philosophy that lie in the
very heart of Smashing Magazine, to
the conference and this is exactly how
it came to be.

SM
A

SH
IN

G
 M

A
G

A
Z

IN
E

INTERVIEW VITALY FRIEDMAN

http://trentwalton.com/2012/06/19/fluid-type/
http://trentwalton.com/2012/06/19/fluid-type/
http://trentwalton.com/2012/06/19/fluid-type/
www.smashingconf.com
www.smashingconf.com

VITALY FRIEDMAN
teCHnOlOGy

With the rate and frequency at which
new frameworks and toolsets are
developed, what are the important
factors you take into account
when deciding on the appropriate
technology to focus on?

Performance and speed. That’s the
key for every single design decision
that we should make when deciding
on an appropriate technology. Of
course, every project will have different
requirements and different scopes as
well as different budgets, but I strongly
believe that performance should

become the established principle
that should guide and inform design
decisions.
The technology is appropriate for
a project if it results in a clean,
maintainable code that runs fast, is built
within the progressive enhancement
methodology (of which I am a strong
proponent).

What is still not available that you
would like to see for web designers
and developers?

Good question. I see a couple of
7 of 10

INTERVIEW VITALY FRIEDMAN

8 of 10

interesting tools appearing now —
http://macaw.co, for example. These
tools try to solve the problem that
designers currently have: Photoshop
is very difficult to use for responsive
design. Stephen Hay has been
advocating using an entirely different
responsive workflow which uses lots of
different tools and Terminal for HTML
prototypes, for examples. It would be
nice to have a couple of bulletproof
approaches that would ease the process
of design and code of responsive
websites and applications. The tools
we have are either too general or too
specific, so perhaps that’s the gap we
have to fill.

Also, I feel that many of us are still
struggling with the actual responsive
design process — what tools to use,
how the deliverables should look
like, what the workflow is, how to
integrate everything into a working
environment, where content strategy
and performance fit within the project.
So it’s not only a matter of tools but
rather a matter of workflow.

What are some of the fundamental
changes in the process of web design
you have noticed over the years?

There were lots of them. I saw a major
shift from table-based layouts to CSS
layouts, then a slow shift from fixed-
width layouts to fluid layouts, later
sprinkled with shiny AJAXness, and
now we see another major shift towards
responsive layouts which pushes away
fixed-width layout even further away.
But also the way we think and approach

Web design has significantly changed.
Our processes have matured and
our coding practices have improved.
There are still some things that keep
repeating themselves as we move
along in our discipline, and there are
some mistakes that are done over and
over again, but we should be proud of
what we have achieved, and the tools
we have developed.

I vividly remember that day when
Firebug came out. Now, that was a
big, big deal. Now we have lots of
useful, smart tools that significantly
empower us in our workflow and it has
been an amazing fundamental shift in
the process as well. I can’t wait to see
what other tools we’ll come up with
over time as Web design becomes
even more mature.

How do you feel about promoting
web standards vs. proprietary
features? Any exceptions to this?

Perhaps I am a bit too pragmatic,
but I would always choose the most
practical solution over any theoretical
discussion. I am a big believer of Web
standards but I can see the advantage
of native applications as well. It really
depends on the budget and the
audience and the requirements of a
given project and return on investment.
Sometimes a native application makes
more sense (e.g., if you want to
develop a graphics-heavy, rich game
experience). I am not quite sure that it
can be done within a short timeframe
and with a limited budget using CSS/
JavaScript alone.

T
E

C
H

N
O

LO
G

Y
INTERVIEW VITALY FRIEDMAN

http://macaw.co/

VITALY FRIEDMAN
& FUn

What do you do for fun?

Music plays a huge part in my life. I
spend a lot of time listening to new
music, but you can also find me
exploring old bookstores where I take
pictures of old manuscripts. I love
travelling, especially to unfamiliar
and obscure places. It’s always great
to have a real change in perspective
and explore how other people think,
work and build stuff. I love observing
people from other industries to better
understand what goes into their
process and how they do what they

do. It’s always fascinating.

You’re a good writer, any projects
(past or future) that you can speak of
that are not related to technology?

Oh thank you for your kind words! Well,
I always want to write more. But I am
not talking about books, or magazines
or articles. I am talking about telling
stories. I have some of ideas of how
to combine both meaning and new
personality in everything I do. Let’s
wait and see how it plays out.

9 of 10

INTERVIEW VITALY FRIEDMAN

10 of 10

How does the philosophy of carpe
diem affect your life?

I used to be a perfectionist, but moving
away from this was definitely one of
the most significant changes in my life
which helped me become better at
what I do. Pragmatism is good, and
being human, and hence not without
mistakes, is what makes you personal,
authentic, honest and real. Everyday
I make sure that whatever I do, and
however I feel, that, at the end of the
day I feel that it couldn’t have been
done otherwise because I want to
make things that matter, and because
what I do matters to me and makes
me who I am.

T
E

C
H

N
O

LO
G

Y
INTERVIEW VITALY FRIEDMAN

appliness(TUTORIALS CSS BOOKMARK / SHARE / TOC

Language-wide
Features in CSS

by Louis Lazaris

TUTORIALS LANGUAGE-WIDE FEATURES IN CSS

by Louis
Lazazris

2 of 5

This article first appeared on Impressive Webs on August 6, 2013. You can read the
original post here.

In addition to the unique property/value pairs that CSS offers, there are also a
small handful of language-wide features that can come in handy, including a few
that are brand new in the spec.

These often go unnoticed, especially by beginners, because when CSS properties
and their possible values are discussed (in tutorials, books, or even in the spec),
these features are usually omitted for brevity.

Here’s a summary of four language-wide CSS features.

Every CSS property can accept, as its value, the keyword inherit. Like this:

span {
 font-size: inherit;
}

What this does is cause the targeted element to inherit the specified property value
from its parent element. If the parent element does not have that specific property
defined in the CSS, it will inherit the parent’s computed value (which could be the
initial value or whatever is inherited from that element’s parent).

KEYWORD: ‘INHERIT’

“There are some language-
wide features that come in

handy, some which are brand
new in the spec.”

http://www.impressivewebs.com/
http://www.impressivewebs.com/language-wide-features-css/
http://www.impressivewebs.com/language-wide-features-css/
http://cssvalues.com/
http://www.w3.org/TR/CSS21/cascade.html%23value-def-inherit
http://www.impressivewebs.com/

TUTORIALS LANGUAGE-WIDE FEATURES IN CSS

The inherit keyword can come in handy when you want to assign the same value
to a bunch of child elements for properties that don’t normally inherit. For example:

.module {
 box-shadow: 0px 0px 11px rgba(0, 0, 0, 0.4);
}

 .module div {
 box-shadow: inherit;
 }

Now all <div> elements inside the main .module element will inherit its box
shadow value.

Browser support for inherit is excellent. For a long time, nobody used inherit
because IE6/7 didn’t support it except on the direction property. Now that those
browsers are mostly out of the picture, most developers should feel comfortable
using it.

This one is easy to understand and is newly added in the CSS3 spec (although,
technically, as with many CSS3 features, it has been in the works for a while).

Every CSS property has an initial, or default value. By defining the value using the
keyword initial, you are telling the browser to render the property using the
default for that property.

So basically this is the same as not defining the property at all, so you might think
it’s mostly useless. That’s partly true, because you probably won’t use this much.
But when you do, it can be handy.

For example, you might want to use initial on a property that gets inherited from
its parent by default, like color:

body {
 color: aquamarine;
}

.example {
 color: initial;
}

KEYWORD: ‘INITIAL’

3 of 5

http://www.w3.org/TR/2002/WD-css3-cascade-20020219/%23initial

TUTORIALS LANGUAGE-WIDE FEATURES IN CSS

The .example element will normally have the same color set as that set on the
body. But in this case, we’re overriding this by letting the color be reset to its initial
state (which is probably black).

Also, this can come in handy when changing styles dynamically with JavaScript.
Through a user interaction or other change, a property can be set to its initial
state, even though it may be defined specifically be default.

As for browser support, I’m really not sure. It seems to work in the latest Chrome
and Firefox, but not in the latest Opera or IE10.

This keyword value used to be called ‘default’ and has now been changed to ‘unset’.
This is very similar to the initial keyword. Basically, using unset as the value
will erase any explicitly defined value that may have been passed to the element
for that property, or previously defined elsewhere.

body {
 font-size: 1.5em;
}

.module {
 font-size: unset;
}

The difference between unset and initial is the fact that the unset value could
be an inherited value. So in a way, this is kind of a combination of the previous two
keywords. When ‘unsetting’ a value, first the browser looks for an inherited value.
If none is found (for example, for a property that doesn’t inherit, like border-
color), then it sets it to the initial, or default value.

Since this is new, I don’t think it has any browser support yet.

KEYWORD: ‘UNSET’

4 of 5

http://dev.w3.org/csswg/css-cascade/%23valuedef-unset

TUTORIALS LANGUAGE-WIDE FEATURES IN CSS

Finally, this is another new one: the all property. Naturally, this one would not be
able to take custom values, so it has three possible keyword values: inherit,
initial, and unset — the three keywords just discussed.

The all property resets all properties on the targeted element, with the exception
of direction and unicode-bidi.

.example {
 all: initial;
}

The spec points out an interesting use case for all when it says:

This can be useful for the root element of a “widget” included in a page,
which does not wish to inherit the styles of the outer page.

As for browser support, due to the fact that the three keyword it accepts are not
supported cross-browser yet, this property is probably not going to be usable for
at least a little while.

You Might Also Like:
• Don’t Forget About “transition: all”

PROPERTY: ‘ALL’

Louis Lazaris
Web Developer

his blog

twitter

share

github

http://dev.w3.org/csswg/css-cascade/%23all-shorthand
http://www.impressivewebs.com/css3-transition-all/
http://www.impressivewebs.com/
https://twitter.com/ImpressiveWebs

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

Animating with
AngularJS

by Holly Schinsky

TUTORIALS ANIMATING WITH ANGULARJS

by Holly
Schinsky

2 of 8

This article first appeared on the Flippin’ Awesome website on August 5, 2013. You
can read it here.

AngularJS recently came out with support for CSS3 transitions and animations, as well
as JavaScript Animations. The support is part of version 1.1.4 (unstable build), but was
changed and refined a bit in version 1.1.5 so you should start with that version when
you check it out. I definitely think it’s worth trying because it allows you to add some
fun interactions to your application quickly.

In this article I’ll explain a bit about how it all works and include links to a demo
application I created to try things our for yourself. The source to the demo application
is located on my GitHub account here as well. I also included some great resources in
the form of links at the end of the post. There’s currently not a lot of documentation
on this subject since it is so new, so I encourage you to check those out as well.

ngAnimate is the name of the new directive for AngularJS animation support. The
way it’s applied is by adding the ng-animate attribute to any element containing one
of the following directives in the list below:

• ngIf
• ngInclude
• ngRepeat
• ngShow / ngHide
• ngSwitch
• ngView

HOW IT WORKS...

“HTML5 makes life easier
for us by defining the right

element.”

http://flippinawesome.org/2013/08/05/animating-with-angularjs/
http://angularjs.org/
http://code.angularjs.org/1.1.5/
http://devgirl.org/files/AngularAnimationsDemo/%23/
https://github.com/hollyschinsky/AngularAnimationsDemo
http://docs.angularjs.org/guide/directive
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngIf
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngInclude
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngRepeat
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngShow
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngHide
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngSwitch
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngView
http://flippinawesome.org/

TUTORIALS ANIMATING WITH ANGULARJS

The only exception to the above is when you create your own custom directive
with animation support using the $animator service. This is discussed later in the
article.

Each of these directives causes a change to the DOM, which is how the transition
or animation is triggered. For instance, on an ngRepeat they will occur when the
items are repeating, for ngShow/ngHide, when the element is being shown or
hidden. You simply specify ng-animate on your element with the name of the
classes you’ve defined in your CSS to perform the transitions or animations and
they will be applied automatically. Of course, you need to ensure you specify the
ng-animate on the same element where you have one of the directives mentioned
above (ngRepeat, ngSwitch etc.) defined or nothing will happen.

Here’s a quick example of applying a scale type of transition the shorthand way
(read on for notation details):

<ng-include ng-animate=”’scale’” src=”’partials/quote.html’”></ng-include>

Then in your CSS, you define a corresponding set of classes prefixed with scale
that are used to trigger the transition or animation based on the type of event you
want to animate for that directive. More info to come on this…

Certain events are supported for each of the directives you can animate. They vary
per directive and it’s important to know which apply for a given directive when
you’re defining your CSS classes to perform the animation.

Here’s the list:

Directive Events

ngIf enter/leave

ngInclude enter/leave

ngRepeat enter/leave/move

ngShow/ngHide show/hide

SUPPORTED EVENTS

3 of 8

TUTORIALS ANIMATING WITH ANGULARJS

Directive Events

ngSwitch enter/leave

ngView enter/leave

The AngularJS docs describe exactly when those events occur for each of the
directives supporting animations. So for instance the ngIf docs provide this
description for the supported enter and leave events:

enter – happens just after the ngIf contents change and a new DOM element is
created and injected into the ngIf container

leave – happens just before the ngIf contents are removed from the DOM

You can use this information to determine when your transitions and animations
will actually be triggered.

ngAnimate can be used for both CSS3 animations and transitions, as well as
JavaScript animations but that is beyond the scope of this article. I wanted to
take a moment to briefly discuss the difference between CSS3 transitions and
animations.

CSS3 Transitions
apply an effect to a style property for a certain duration. You can do things like
fade, scale, move, slide, rotate, 3D effects etc.

CSS3 Animations are more complex than transitions and use keyframes to define
different points to do things within the animation. These can be looped and auto-
started. In addition, they don’t have to depend on a DOM change to trigger them.

The difference in using CSS3 transitions versus CSS3 animations with ngAnimate
is all in the way the CSS classes are defined. A great example can be found in the
AngularJS 1.1.5 docs for ngAnimate. I’m including it here too for easy reference:

CSS3 TRANSITIONS VERSUS CSS3 ANIMATIONS

4 of 8

http://code.angularjs.org/1.1.5/docs/api
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngAnimate

TUTORIALS ANIMATING WITH ANGULARJS

.animate-enter {
 -webkit-transition: 1s linear all; /* Safari/Chrome */
 -moz-transition: 1s linear all; /* Firefox */
 -o-transition: 1s linear all; /* Opera */
 transition: 1s linear all; /* IE10+ and Future Browsers */

 /* The animation preparation code */
 opacity: 0;
}

/*
 Keep in mind that you want to combine both CSS
 classes together to avoid any CSS-specificity
 conflicts
*/
.animate-enter.animate-enter-active {
 /* The animation code itself */
 opacity: 1;
}

.animate-enter {
 -webkit-animation: enter_sequence 1s linear; /* Safari/Chrome */
 -moz-animation: enter_sequence 1s linear; /* Firefox */
 -o-animation: enter_sequence 1s linear; /* Opera */
 animation: enter_sequence 1s linear; /* IE10+ and Future Browsers */
}
@-webkit-keyframes enter_sequence {
 from { opacity:0; }
 to { opacity:1; }
}
@-moz-keyframes enter_sequence {
 from { opacity:0; }
 to { opacity:1; }
}
@-o-keyframes enter_sequence {
 from { opacity:0; }
 to { opacity:1; }
}
@keyframes enter_sequence {
 from { opacity:0; }
 to { opacity:1; }
}

CSS3 TRANSITION SAMPLE

CSS3 ANIMATION SAMPLE

5 of 8

TUTORIALS ANIMATING WITH ANGULARJS

When using ngAnimate for either of the above, the same syntax would be used
to apply the directive, such as:

<div ng-view ng-animate=”{enter: ‘animate-enter’}”></div>

I highly recommend reading through the documentation for further details on how
this is all handled.

When writing your CSS classes to apply your transitions or animations, you define
two CSS classes for each supported event (enter, leave, show, hide, etc). One is
used as a baseline class and the other is defined as an active class where the
animation actually happens. There is a certain notation you need to use to define
these classes. The base class is named as name-event (ie: slide-enter), whereas
the active class is named the same with the keyword “active” appended to it (ie:
slide-enter-active).

For example, using a fade type of effect on an ngShow or ngHide would require
these 4 classes to be defined (since “show” and “hide” are the supported events
for that directive):

.fade-show {
 -webkit-transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 -moz-transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 -ms-transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 -o-transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 white-space:nowrap;
 position:relative;
 overflow: hidden;
 text-overflow: clip;
}
.fade-show-active {
 opacity:1;
}
.fade-hide {
 -webkit-transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 -moz-transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 -ms-transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 -o-transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;
 transition: 400ms cubic-bezier(0.250, 0.250, 0.750, 0.750) all;

NAMING CONVENTIONS

6 of 8

http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngAnimate

TUTORIALS ANIMATING WITH ANGULARJS

 white-space:nowrap;
 position:relative;
 overflow: hidden;
 text-overflow: clip;
}
.fade-hide-active {
 opacity:0;
}

Once you define all of your animations and transitions, you apply them via the
ngAnimate directive. There are two ways you can describe which CSS classes to
use, explicitly or shorthand. Both are shown below:

Explicit:
Here you explicitly name the class to apply for each supported event (enter, leave
etc).

<div ng-view ng-animate=”{enter: ‘rotate-enter’, leave: ‘rotate-leave’}”></div>

Shorthand:
The shorthand way of applying them is through a name only, and then that name with
the event appended is implied as the class name. So for instance, in the following,
the resulting class names implied will be name-event or rotate-enter and
rotate-leave, just as above:

<div ng-view ng-animate=”’rotate’”>

Check out the demo source or links provided for specific examples to understand
the syntax further.

You can customize your AngularJS animation in different ways using the $animator
service. You could create your own custom animation events or use the built-in
ones like “enter” and “leave” with ng-animate in your own custom directive by
accessing them off the $animator service.

APPLYING THE CSS NG-ANIMATE

CUSTOMIZING ANIMATION

7 of 8

http://devgirl.org/files/AngularAnimationsDemo/%23/

TUTORIALS ANIMATING WITH ANGULARJS

You can also define custom events using the $animator.animate(myEvent,element)
function, where myEvent is your own String and element is what to apply the
transition or animation to.

I included an example of defining a custom directive and custom event in the demo
application if you are interested in seeing how it works.

• Demo Application
• AngularJS 1.1.5 Docs for ngAnimate
• nganimate.org – Great samples here
• Really nice detailed article about the new animations support in AngularJS
• AngularJS and Animation Slides with demos by Gias Kay Lee
• Animate your AngularJS apps with CSS3 and jQuery article
• Misko Hevery video talking about the new animation features
• Swipe Demo and code using ngAnimate
• Video showing swipe demo and code
• All About CSS3 Transitions
• All About CSS3 Animations

RELATED RESOURCES

Holly Schinsky
Developer Evangelist

her blog

twitter

share

github

http://devgirl.org/files/AngularAnimationsDemo/%23/customView
http://devgirl.org/files/AngularAnimationsDemo/%23/
http://code.angularjs.org/1.1.5/docs/api/ng.directive:ngAnimate
http://nganimate.org/
http://slid.es/gsklee/animation-in-angularjs
http://slid.es/gsklee/animation-in-angularjs
http://gsklee.im/post/50254705713/nganimate-your-angularjs-apps-with-css3-and-jquery
http://www.youtube.com/watch%3Fv%3DcF_JsA9KsDM
https://github.com/jeffbcross/ngswipe-demo
https://plus.google.com/115279700532270609876/posts/L9q6HFFdrgj
http://www.kirupa.com/html5/all_about_css_transitions.htm
http://www.kirupa.com/html5/all_about_css_animations.htm
http://devgirl.org/
https://twitter.com/devgirlFL
https://github.com/hollyschinsky

appliness(TUTORIALS WEB STANDARDS BOOKMARK / SHARE / TOC

Introduction to
Topcoat

by Chris Griffith

TUTORIALS INTRODUCTION TO TOPCOAT

by Chris
Griffith

2 of 8

This article first appeared on the Flippin’ Awesome website on August 5, 2013. You
can read it here.

Topcoat is a brand new open source component
library built entirely on web standards (CSS
and HTML) and is available at topcoat.io. It was
designed to assist developers and designers in
creating high-performance web and PhoneGap
applications. This project was announced shortly
before the 2013 Adobe MAX conference and, in
fact, the official 2013 Adobe MAX conference app
was built using Topcoat for its user interface.

The Topcoat project originally grew out a need from
several teams within Adobe (most notably the Edge
Reflow and Brackets teams), as well as feedback
from the PhoneGap developer community for
component set that was light-weight, fast, and easily
themeable. Lead by Kristofer Joseph, along with
Garth Braithwaite and Brian LeRoux, this project is
being driven by a great group of developers and
designers.

“HTML5 makes life easier
for us by defining the right

element.”

http://flippinawesome.org/2013/08/05/introduction-to-topcoat/
http://topcoat.io/
https://twitter.com/dam
http://flippinawesome.org/

TUTORIALS INTRODUCTION TO TOPCOAT

 The out of the box installation of Topcoat is incredibly simple:

• Download Topcoat
• Open index.html to view the usage guides.
• Copy your desired theme CSS from the css/ folder into your project
• Copy the img/ and font/ folders into your project (eel free to only copy the

images and font weights you intend to use)
• Link the CSS into your page. For instance, if you want to use the mobile light

theme use:

<link rel=”stylesheet” type=”text/css” href=”css/topcoat-mobile-light.min.
css”>

• Done.

However, you probably will want to create a custom build of only the components
that your app is using.

One important thing to remember about Topcoat is that it is not a framework.
Topcoat’s library can be used along with any JavaScript framework (Backbone,
Angular, etc). It just a collection of CSS and HTML.

 As of version 0.5.1, the library consists of:

• Button
• Quiet Button
• Large Button
• Large Quiet Button
• Call To Action Button
• Large Call To Action Button
• Icon Button
• Quiet Icon Button
• Large Icon Button
• Large Quiet Icon Button

GETTING STARTED WITH TOPCOAT

EXPLORING THE COMPONENTS

3 of 8

http://topcoat.io/

TUTORIALS INTRODUCTION TO TOPCOAT

• List
• Navigation Bar
• Search Input
• Large Search Input
• Text Input
• Large Text Input
• TopCoat Textarea
• Topcoat Large Textarea

The library ships with both a mobile-friendly set of components, as well as a desktop-
friendly version. Each of these versions is also available in both a light or dark style.
Each control lives in its own GitHub repository and has no dependencies (not even
jQuery), so you can easily assemble just what your app will need (more on that later
in this article). When creating mobile apps (or PhoneGap apps) in particular, having
lightweight components can greatly improve the performance (and thus the user
experience).

As an example, let’s look at how to implement a list component:

<div class=”topcoat-list__container”>
 <h3 class=”topcoat-list__header”>Category</h3>
 <ul class=”topcoat-list”>
 <li class=”topcoat-list__item”>
 Item 1

 <li class=”topcoat-list__item”>
 Item 2

 <li class=”topcoat-list__item”>
 Item 3

</div>

4 of 8

TUTORIALS INTRODUCTION TO TOPCOAT

As you can see there is not a lot of additional markup to create our Topcoat list
component. A containing div and few additional CSS classes on the ul and li
elements. The accompanying CSS is also fairly straightforward. Here is generated
CSS for the dark theme:

.topcoat-list__container {
 padding: 0;
 margin: 0;
 font: inherit;
 color: inherit;
 background: transparent;
 border: none;
 cursor: default;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 overflow: auto;
 -webkit-overflow-scrolling: touch;
 border-top: 1px solid #2f3234;
 border-bottom: 1px solid #eff1f1;
 background-color: #444849;
}
.topcoat-list__header {
 margin: 0;
 padding: 0.3rem 1.6rem;
 font-size: 0.9em;
 font-weight: 400;
 background-color: #3b3e40;
 color: #868888;
 text-shadow: 0 -1px 0 rgba(0,0,0,0.3);
 border-top: solid 1px rgba(255,255,255,0.1);
 border-bottom: solid 1px rgba(255,255,255,0.05);
}
.topcoat-list {
 padding: 0;
 margin: 0;
 list-style-type: none;
 border-top: 1px solid #2f3234;
 color: #c6c8c8;
}
.topcoat-list__item {
 margin: 0;
 padding: 0;
 padding: 1.16rem;
 border-top: 1px solid #5e6061;
 border-bottom: 1px solid #2f3234;
}
.topcoat-list__item:first-child {
 border-top: 1px solid rgba(0,0,0,0.05);
}

5 of 8

TUTORIALS INTRODUCTION TO TOPCOAT

The structure of the CSS follows the BEM (Block, Element, Modifier) model. If you
are unfamiliar with BEM, take a look at this article. This structure greatly helps in
understanding where and how the CSS attributes are being applied to the HTML.
The components in Topcoat CSS are authored in Stylus, and utilizes many of its
features to allow for a clean separation of resets, from layout, from aesthetic, and
between platforms. I personally had not worked with Stylus before, but was able
to quickly pick up their stylesheet language.

Although, the team has taken great efforts enable easy customization of each
component, the heart of the project is the actual performance of each component.
The team has set up a complete benchmarking suite to measure the performance.

Source: http://bench.topcoat.io/

PERFORMANCE FIRST!

6 of 8

http://bem.info/method/definitions/
http://learnboost.github.io/stylus/
http://bench.topcoat.io/

TUTORIALS INTRODUCTION TO TOPCOAT

If fact, this system is also totally open source and can be used as a stand alone tool
for teams looking to find ways to measure their own application’s performance.

What would a component library be complete without an icon set? Topcoat has
included them as SVG, PNG or as a semantic icon font. And, yes, they are also
open source.

Recently, the team behind Effeckt.css, a new mobile friendly library for performant
transitions and animations, began exploring possible collaboration with the Topcoat
team. Components and transitions are tightly coupled from an actual user interface
perspective. Often, it is the transitional portion of the component, for example how
an overlay appears, that creates the value of the component to the application.
This effort just got underway, so keep an eye out for improvements down the road.

Although the minified version of currently clocks in about 13K, you might wish
to trim the library down to just the components that your application uses. Since
Topcoat is built using Grunt, it is relatively easy to edit the build script to generate
your custom library. Here are the steps:

• Fork Topcoat from http://github.com/Topcoat/Topcoat
• Install Node and run npm install -g grunt-cli and npm install in the

Topcoat directory.
• Modify the package.json to point to only the controls you need
• Run grunt to generate your custom build

ICONS

TRANSITIONS AND ANIMATIONS

CUSTOM BUILDS

7 of 8

http://h5bp.github.io/Effeckt.css/dist/%230
http://gruntjs.com/

TUTORIALS INTRODUCTION TO TOPCOAT

Generating custom themes is also done through the use of Grunt. Here are the
steps:

Fork http://github.com/Topcoat/theme
Modify various variables files to make your changes
Modify ./topcoat-X.X.X/package.json to point to your theme and run grunt

Remember, Topcoat is totally open source software. There are bugs, and the team
is still solidifying their architecture, so there are many ways to contribute! Here are
some additional links to get you started:

• The main home is http://topcoat.io
• Learn more about Topcoat on the wiki: https://github.com/topcoat/topcoat/wiki
• Get answers via the mailing list: http://groups.google.com/group/topcoat
• Request features and file bugs via the issue tracker. Note each control in Topcoat

has its own git repo, thus versions, and therefore issue trackers too. http://github.
com/topcoat

• Tweet the project on Twitter: http://twitter.com/topcoat

CUSTOM THEMES

WHAT’S NEXT?

Chris Griffith
Engineer

his blog

twitter

share

github

http://topcoat.io/
https://github.com/topcoat/topcoat/wiki
https://groups.google.com/forum/%23%21forum/topcoat
https://github.com/topcoat
https://github.com/topcoat
https://twitter.com/topcoat
http://chrisgriffith.wordpress.com/
http://devgirl.org/
https://twitter.com/%40chrisgriffith
https://github.com/hollyschinsky

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

Ractive.js
Expressions

by Rich Harris

TUTORIALS RACTIVE.JS EXPRESSIONS AND THE NEW WAVE OF REACTIVE PROGRAMMING

by Rich
Harris

2 of 9

This article first appeared on the Flippin’ Awesome website on August 19, 2013. You
can read it here.

Dedicated followers of JavaScript fashion will by now have noticed this season’s hot
new trend. If you haven’t spotted it yet, here are a few projects sporting this style on
the GitHub catwalk – React, Reactive.js, component/reactive and reactive.coffee.

That’s right: reactive programming is the new black.

At a high level, the idea behind reactive programming is that changes in state propagate
throughout a system. Put crudely, this means that in a reactive system where a = b *
2, whenever the value of b changes, the value of a will also change, rather than forever
being equal to whatever b * 2 was at the time of the statement.

When we take this idea and apply it to user interfaces, we eliminate the DOM
manipulation drudgery that dominates web developers’ lives.

Ractive.js is a new library initially developed to create interactive (hence the name –
not to be confused with Reactive.js!) news applications at theguardian.com. It is
designed to dramatically reduce the effort involved in creating web apps by embracing
these principles.

“Dedicated followers of
JavaScript fashion will by

now have noticed this
season’s hot new trend.”

http://flippinawesome.org/
http://flippinawesome.org/2013/08/19/ractive-js-expressions-and-the-new-wave-of-reactive-programming/
http://facebook.github.io/react/
https://github.com/mattbaker/Reactive.js
https://github.com/component/reactive
https://github.com/yang/reactive-coffee
http://www.ractivejs.org/
http://www.theguardian.com/us
http://flippinawesome.org/

TUTORIALS RACTIVE.JS EXPRESSIONS AND THE NEW WAVE OF REACTIVE PROGRAMMING

Let’s look at a simple example:

// We create a new ractive, which renders the following to a container element:
// <p>Hello, Dave! You have 4 tasks remaining.</p>

var ractive = new Ractive({
 el: container,
 template: ‘<p>Hello, {{name}}! You have {{tasks.incomplete}} tasks
remaining.</p>’,
 data: {
 user: { name: ‘Dave’, tasks: { incomplete: 4, total: 11 } }
 }
});

// Later we get some new data:
ractive.set(‘tasks’, { incomplete: 5, total: 12 });

// The ractive reacts accordingly, surgically updating the part of the DOM that
is now out of date:
// <p>Hello, Dave! You have 5 tasks remaining.</p>

Rather than doing any kind of polling or brute-force ‘dirty checking,’ this uses
an elegant dependency tracking system: the text node containing the number of
incomplete tasks depends on the tasks.incomplete keypath, which is a child of
the tasks keypath. So when we update tasks, we know that we need to check to
see if tasks.incomplete has changed – but we don’t need to bother checking
tasks.total, because nothing depends on that keypath.

As applications grow in complexity, this means much less work for the developer.
You might think it sounds like more work for the browser, but it’s not. The non-
reactive way to do interactive UI typically involves re-rendering views regardless
of whether they’ve changed, and replacing chunks of perfectly good DOM (why
hello, garbage collector), which is typically much less efficient.

In other words, reactive UI is a win-win – better for performance, and better for
your sanity.

3 of 9

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management

TUTORIALS RACTIVE.JS EXPRESSIONS AND THE NEW WAVE OF REACTIVE PROGRAMMING

This article won’t go any further into the basics of what Ractive does or why we
built it – if you’re interested, you can follow the interactive tutorials or read the
introductory blog post. Instead, we’re going to focus on one of the features that
helps Ractive stand out from its peers, namely expressions.

Expressions allow you to take the logic that only your interface cares about, and put
it in your template where it belongs. Yes, I just said that! If you’ve ever had to debug
badly written PHP (for example), you may well shudder at the suggestion that logic
belongs in templates. But while it’s true that business logic doesn’t belong in your
templates, it’s equally true that a lot of presentation logic – aka ‘data massaging’
– doesn’t really belong in your code.

(If you still need convincing, here’s a couple of good articles on the subject: The
Case Against Logic-less Templates and Cult of Logic-Less Templates.)

Let’s take our initial example and turn it into a basic todo app along the lines of
TodoMVC. Our template looks like this – ignore the question marks for now:

<p>Hello, {{name}}! You have ??? tasks remaining.</p>

{{#tasks :i}}
 <li class=’task’>{{i}}: {{description}}
{{/tasks}}

Meanwhile our model, if you want to use MVC terminology, is a simple array of
objects representing tasks:

tasks = [
 { completed: true, description: ‘Add a task’ },
 { completed: false, description: ‘Add some more tasks’ }.
 { completed: false, description: ‘Solve P = NP’ }
];

ractive = new Ractive({
 el: container,
 template: template,
 data: { name: ‘Dave’, tasks: tasks }
});

THE SECRET SAUCE: EXPRESSIONS

4 of 9

http://learn.ractivejs.org/%23%21/hello-world/1
http://www.theguardian.com/info/developer-blog/2013/jul/24/ractive-js-next-generation-dom-manipulation
http://www.theguardian.com/info/developer-blog/2013/jul/24/ractive-js-next-generation-dom-manipulation
http://www.ebaytechblog.com/2012/10/01/the-case-against-logic-less-templates/
http://www.ebaytechblog.com/2012/10/01/the-case-against-logic-less-templates/
http://boronine.com/2012/09/07/Cult-Of-Logic-less-Templates/
http://todomvc.com/

TUTORIALS RACTIVE.JS EXPRESSIONS AND THE NEW WAVE OF REACTIVE PROGRAMMING

This renders the following:

<p>Hello, Dave! You have ??? tasks remaining.</p>

 <li class=’task’>0: Add a task
 <li class=’task’>1: Add some more tasks
 <li class=’task’>2: Solve P = NP

This time, there’s no tasks.incomplete property, because tasks is an array.
We’ll come back to that. The first job is to rejig the numbers so that it starts at 1,
because lists starting with 0 only make sense to programmers. Doing so is trivial:

<li class=’task’>{{i+1}}: {{description}}

Next, let’s add a complete class to any completed task:

<li class=’task {{ completed ? “complete” : “pending” }}’>{{i+1}}:
{{description}}

Now, our rendered task list looks like this:

<p>Hello, Dave! You have ??? tasks remaining.</p>

 <li class=’task complete’>1: Add a task
 <li class=’task pending’>2: Add some more tasks
 <li class=’task pending’>3: Solve P = NP

Now, let’s deal with those question marks. One way – the traditional way – would
be to keep track of the incomplete count as a separate value in our model (or
viewmodel, depending on which tribe you belong to), and update it every time the
task list changed. The trouble with that is you have to add the necessary logic to
every bit of your app that can change the model in some way – a toggle on each
task, a ‘mark all as complete’ button, the code that reads from the server (or local
storage), or whatever else gets added in future. It doesn’t scale.

5 of 9

TUTORIALS RACTIVE.JS EXPRESSIONS AND THE NEW WAVE OF REACTIVE PROGRAMMING

A better way is to have the template react to changes by calling any necessary
logic when it needs to:

<p>Hello, Dave! You have {{ tasks.filter(incomplete).length }} tasks
remaining.</p>

Then, we just need to add an incomplete filter to our model:

ractive = new Ractive({
 el: container,
 template: template,
 data: {
 name: ‘Dave’,
 tasks: tasks,
 incomplete: function (item) {
 return !item.completed;
 }
 }
});

Now, whenever tasks changes – whether because we’ve added a new one, or
changed the status of one or more tasks, or whatever – the expression will be
re-evaluated. If the number of incomplete tasks has changed, the DOM will be
updated.

As our app becomes more complex, this approach scales beautifully, saving us from
a convoluted observing/massaging/updating of our data. You can see a fully fleshed
out TodoMVC implementation here – (the source code is possibly the shortest of
any implementation, and arguably some of the most readable).

It also allows us to do things like sophisticated animations, without reams of complex
render logic.

6 of 9

http://www.rich-harris.co.uk/Ractive-TodoMVC/
https://github.com/Rich-Harris/Ractive-TodoMVC
http://www.ractivejs.org/examples/animated-chart/

TUTORIALS RACTIVE.JS EXPRESSIONS AND THE NEW WAVE OF REACTIVE PROGRAMMING

Traditional templating engines work by interpolating strings, the result of which
is typically rendered using innerHTML. Ractive is different – it parses templates
into a tree-like JSON structure which contains the DNA of the app, using a PEG-
style parser. When it encounters an expression, the parser first creates an abstract
syntax tree representation of it, then extracts the references from the AST, then
collapses it down to a string representation.

Ractive.parse(‘{{i+1}}’);

// results in the following - it’s deliberately terse, so that
// you can parse on the server and send the result to browsers
// without wasting bytes:
// {
// t: 2, // the type of mustache
// x: { // the expression
// r: [“i”], // the references used in the expression
// s: “${0}+1” // a reference-agnostic string representation
// }
// }

Later, when Ractive renders this mustache, it will try to resolve the references used
in the expression. In this example, there’s only one reference – i – which resolves
to 0 for the first task, then 1, then 2 and so on. Ractive creates a function – using
the Function constructor – that takes the value of i as an argument and returns
i+1.

This might seem like a roundabout way to add 1 to something. But because we
only need to create the function once, rather than repeatedly evaling code (which
is slow), it’s a memory-efficient and performant way to solve the problem even
when dealing with hundreds of tasks.

HOW DOES IT WORK?

7 of 9

http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

TUTORIALS RACTIVE.JS EXPRESSIONS AND THE NEW WAVE OF REACTIVE PROGRAMMING

And because we know which references are involved, we know when to call the
function again. Consider the next expression:

Ractive.parse(‘{{ completed ? “complete” : “pending” }}’);

// {
// t: 2,
// x: {
// r: [“completed”],
// s: “${0}?’complete’:’pending’”
// }
// }

For the first task, the completed reference resolves to the keypath
tasks.0.completed – for the second, tasks.1.completed and so on. In each
case, Ractive registers the mustache as a dependant of the keypath, so that when
tasks.0.completed changes (again, it doesn’t matter what happened to cause
it to change – that’s the beauty of reactive programming), the expression is re-
evaluated and the DOM is updated.

Up to a point. Since in a reactive system we don’t have control over when the
expression is evaluated, it’s important that expressions don’t have side effects – so
if we try to use assignment operators such as foo = bar or foo += 1, the parser
will fail. The same goes for certain keywords, such as new, delete and function.

SO IS IT ‘REAL JAVASCRIPT’?

8 of 9

TUTORIALS RACTIVE.JS EXPRESSIONS AND THE NEW WAVE OF REACTIVE PROGRAMMING

Of course, it’s still possible to create side-effects by referencing a function which
itself has side-effects. Remember our incomplete filter? There’s nothing to stop
you doing this:

ractive = new Ractive({
 el: container,
 template: template,
 data: {
 name: ‘Dave’,
 tasks: tasks,
 incomplete: function (item) {
 doSomeExpensiveComputation();
 counter += 1;
 return !item.completed;
 }
 }
});

But by parsing expressions and blocking ‘accidental’ side-effects, we can encourage
best practices without preventing power users from manipulating the system to
their own ends.

Expect to see more examples of the reactive programming trend coming to a
repository near you. As with all programming paradigms, it’s not a silver bullet,
but by integrating reactive thinking into our work we can start to structure our
applications in a way that is more readable and (often) more efficient.

Ractive.js is under active development – it’s production-ready (to get started, try
the 60 second setup or follow the interactive tutorials), but will continue to evolve as
we collectively figure out the secrets of reactive programming. If you’re interested
in being part of that conversation, come on over to GitHub and help shape the
future of web development.

THE FUTURE

Rich Harris
Web Developer

his blog

twitter

share

github

http://www.ractivejs.org/
https://github.com/Rich-Harris/Ractive/wiki/60-second-setup
https://github.com/Rich-Harris/Ractive/wiki/60-second-setup
http://learn.ractivejs.org/%23%21/hello-world/1
https://github.com/Rich-Harris/Ractive
http://www.rich-harris.co.uk/
https://twitter.com/Rich_Harris
https://github.com/Rich-Harris/Ractive

appliness(TUTORIALS WEB BOOKMARK / SHARE / TOC

5 New Useful
Services to Create
Web Services

by Anastasia Antonova

TUTORIALS 5 NEW USEFUL SERVICES TO CREATE WEB SERVICES

by Anastasia
Antonova

2 of 6

Web projects are something that many people dream about. There are a lot of guides
devoted to the strategy or team building, idea generation, etc. We have prepared a list
of useful but maybe unknown services that would help building your own web project.

From casual file sharing to complete project collaboration

Chapoo - is service that let you upload and share all kinds of documents with friends
and colleagues. You can share via Facebook, Twitter or Email. And with other Chapoo
users you can also share complete folders and fine-tune access rights. Chapoo supports
even CAD files! Service is perfect for collaborative work over the project.

CHAPOO

“We have prepared a list of
useful, but maybe unknown

services.”

http://www.chapoo.com/en_INTL/%0D%0DW%0D%0DW%0D%0DW

TUTORIALS 5 NEW USEFUL SERVICES TO CREATE WEB SERVICES

We handle files, so you don’t have to

Uploadcare helps media creators, businesses and developers store, process and
deliver visual content to their clients. Uploadcare seamlessly integrates to allow
uploading, editing and posting images to a blog, website or app straight from a
computer, a mobile device, Facebook or Instagram account, or a popular cloud
solution - like Dropbox or Google Drive. Uploadcare utilizes Amazon S3 file hosting
& backup, and Cloudflare Content Delivery Network, with the option to connect
any S3/CDN account. Uploadcare takes just 10 minutes to integrate on a variety of
platforms.

There’s no miles of code, painful integration or costly maintenance. All of
Uploadcare’s components - widgets to CDN - work seamlessly together, require
almost no configuration and are highly customizable to meet the client’s demands.

UPLOADCARE

3 of 6

https://uploadcare.com/

TUTORIALS 5 NEW USEFUL SERVICES TO CREATE WEB SERVICES

Real software development in the browser

Koding is like new development computer in your browser. which allows software
developers to program and collaborate online in the browser without the needs of
downloading the software development kits. The platform supports multiple
programming languages, including Python, Java, Perl, Node.js, Ruby, C, C++ and
Go.

KODING

4 of 6

https://koding.com/Home

TUTORIALS 5 NEW USEFUL SERVICES TO CREATE WEB SERVICES

Cool stuff to make your life much easier

Proto - is a mobile prototyping platform to easily build and deploy fully interactive
mobile app prototypes and simulations that look and behave exactly like a finished
product. It allows users to create realistic, sharable prototypes that work as a real
app should and experience their prototype on the actual device. You can actually
test any project from UI service to the new car model. Proto.io uses drag and drop
interface, hence no coding knowledge are needed.

PROTO.IO

5 of 6

http://proto.io/

TUTORIALS 5 NEW USEFUL SERVICES TO CREATE WEB SERVICES

Take control of your errors

Rollbar collects and analyzes errors in web and server applications, so you can find
and fix them faster. Rollbar is platform-agnostic and can accept data from anything
that can speak HTTP and JSON. You can use official libraries for Ruby,Python, PHP,
Node.js, Javascript, or Flash, or roll your own with our API.

Anastasia Antonova, startuper, PR and marketing specialist. Anastasia is
running marketing activities at Whitescape, web-development company,
and business development at Feedback Media Agency, social media
advertising company.

ROLLBAR

Anastasia Antonova
Startuper and PR Specialist

her site

twitter

share

github

https://rollbar.com/
http://whitescape.com/
https://twitter.com/an_tonova

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

AngularJS Best
Practices

by Jaco Pretorius

TUTORIALS ANGULARJS BEST PRACTICES

by Jaco
Pretorius

2 of 5

Miško Hevery – the father of AngularJS – gave a very interesting presentation on
AngularJS best practices in December of last year. This presentation is available on
YouTube and the actual slides are on Google Docs. Watch the Youtube video here:

I’m going to cover a few of the points he covered in his presentation and give my take
on them.

Angular suggests that you use a certain directory structure, which you can create either
using the Angular-seed project or the new Yeoman tool. (Angular-seed was actually
created before Yeoman was around so you’re probably better off using Yeoman now)

This is called ‘Convention over Configuration’ – a concept you will hear a lot if you
delve into Rails – although this doesn’t really apply in Angular as far as I can tell. For
example, you still need to manually include all your controllers in an index file (or use

DIRECTORY STRUCTURE

“Angular suggests that
you use a certain directory

structure.”

http://www.youtube.com/watch%3Fv%3DZhfUv0spHCY
https://docs.google.com/presentation/d/1GB0LO-gQ63bfaDfdaKLcdsFV3gt27m7ICmdfY21yFIo/pub%3Fstart%3Dfalse%26loop%3Dfalse%26delayms%3D3000%23slide%3Did.g58b27ea1_3_18
https://github.com/angular/angular-seed
http://yeoman.io/

TUTORIALS ANGULARJS BEST PRACTICES

something like RequireJS) – if we were in a ‘Convention over Configuration’ world
I would expect a controller to be picked up automatically if I put it in the correct
folder.

In any case, it’s still a good idea to stick to the conventions simply to make it easier
for a developer to look at your codebase and know where files should live. The
default conventions also dictate that:

• Everything that gets deployed is in the app directory
• Everything outside of the app directory is for development

Dependency Injection (DI) is built-in with Angular so not only is it best practice to
use Dependency Injection it’s absolutely necessary (except perhaps for the most
rudimentary of applications). It becomes especially important when we delve into
unit testing – you can use dependency injection to substitute actual dependencies
for mock dependencies to isolate behavior.

I must confess I’m not 100% sure why we need Dependency Injection in Angular.
Keep in mind that that Dependency Injection is not a requirement for testability
– for example, Rails is perfectly testable and contains no Dependency Injection. I
find it rather odd to use Dependency Injection in a dynamic language, but in any
case – you definitely should use it in Angular.

When your page first loads you will often see the angular code in the view before
Angular is loaded (especially on older browsers) – it will looks something like this
(for a moment):

{{ interpolation }}

We have a few options in order to get around this. One is to use ng-cloak – simply
create a style which says

[ng-cloak] { display: none; }

DEPENDENCY INJECTION

HIDING FLASHES OF UNSTYLED CONTENT

3 of 5

http://requirejs.org/

TUTORIALS ANGULARJS BEST PRACTICES

We usually put this on the body tag, which means the page will only be shown
once Angular is loaded. This does means there is a slight delay before anything is
rendered.

An alternative is to use ng-bind, so instead of:

<p>Hello, {{ user.name }}</p>

Use this:

<p>Hello, </p>

What’s rather neat about this approach is that we can set a default value to display,
before the browser has loaded Angular.

<p>Hello, ???</p>

Keep in mind this is only necessary on your first page (typically index.html) if you’re
building a single-page application (SPA).

One of the ideas behind MVC is the separation of business and presentation logic.
Angular helps to accomplish this with the concepts of controllers and services.

Controllers should contain view logic, but shouldn’t actually reference the DOM
(referencing the DOM should only be done through directives). The controller
should answer questions such as:

• What should happen when the user clicks this button?
• Where do I get the data to display?

Services on the other hand should not contain view logic – services should contain
logic independent of the view.

For example, if we are building an email management app, we might have the ability
to delete an email. You might even be able to delete an email from multiple places –
for example, in a list view as well as when viewing an individual email. So 2 separate
controllers might handle the event of the user clicking the ‘delete email’ button,
but the logic for deleting an email should actually reside in a service. Likewise, if

SEPEARATE BUSINESS AND PRESENTATION LOGIC

4 of 5

TUTORIALS ANGULARJS BEST PRACTICES

we need to display a list of emails or an individual email it is the responsibility of
the controller to ask a service for this data.

Angular allows the controller to interact with the view through the scope object.
While this is a clean separation, it’s also pretty easy to make the scope object very
messy. There are two general guidelines to stick to with regards to the scope:

• Treat the scope as read-only in views
• Treat the scope as write-only in controllers

These guidelines are very similar to the way you tend to interact with the view in a
Rails application – you send variables to the view by writing to local fields – which
Rails then magically links into the view – but you would very rarely read from local
fields in the controller. In the view you can only read from fields assigned by the
controller – there is no way to communicate back to the controller except through
an action.

I have found these 2 guidelines to be most useful in my current application. It’s still
difficult to stick with these guidelines 100% of time, but treating any exception as
a code smell is a great way to go.

There’s quite a few topics I haven’t covered here – the actual presentation I
mentioned covers deployment, minification, etc, but those issues aren’t really unique
to Angular so I haven’t covered them. Do take a look at the original presentation
– it’s definitely worth your time. Happy coding.

MORE

Jaco Pretorius
Programmer

his blog

twitter

share

github

http://www.jacopretorius.net/
https://twitter.com/JacoPretorius
https://github.com/Jaco-Pretorius

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

The flag / g of
JavaScript’s
regular expressions

by Dr. Axel Rauschmayer

TUTORIALS THE FLAG / G OF JAVASCRIPT’S REGULAR EXPRESSIONS

by Dr. Axel
Rauschmayer

2 of 8

This article describes when and how to use regular expressions whose flag /g is set
and what can go wrong.
(If you want to read a more general introduction to regular expressions, consult
[1].)

Sometimes, a regular expression should match the same string multiple times.
Then the regular expression object needs to be created with the flag /g set (be
it via a regular expression literal, be it via the constructor RegExp). That leads to
the property global of the regular expression object being true and to several
operations behaving differently.

 > var regex = /x/g;
 > regex.global
 true

The property lastIndex is used to keep track where in the string matching should
continue, as we shall see in a moment.

Regular expressions have the method

 RegExp.prototype.test(str)

Without the flag /g, the method test() of regular expressions simply checks
whether there is a match somewhere in str:

 > var str = ‘_x_x’;

 > /x/.test(str)
 true

THE FLAG /G OF REGULAR EXPRESSIONS

REGEXP.PROTOTYPE.TEST(): DETERMINING WHETHER THERE IS A MATCH

“This describes when
and how to use regular

expressions whose flag / g is
set and what can go wrong.”

http://www.2ality.com/2013/08/regexp-g.html%23%5B1%5D

TUTORIALS THE FLAG / G OF JAVASCRIPT’S REGULAR EXPRESSIONS

With the flag /g set, test() returns true as many times as there are matches in
the string. lastIndex contains the index after the last match.

 > var regex = /x/g;
 > regex.lastIndex
 0
 > regex.test(str)
 true
 > regex.lastIndex
 2
 > regex.test(str)
 true
 > regex.lastIndex
 4
 > regex.test(str)
 false

Strings have the method

 String.prototype.search(regex)

This method ignores the properties global and lastIndex of regex. It returns
the index where regex matches (the first time).

 > ‘_x_x’.search(/x/)
 1

STRING.PROTOTYPE.SEARCH(): FINDING THE INDEX OF A MATCH

3 of 8

TUTORIALS THE FLAG / G OF JAVASCRIPT’S REGULAR EXPRESSIONS

Regular expressions have the method

 RegExp.prototype.exec(str)

If the flag /g is not set then this method always returns the match object [1] for the
first match:

 > var str = ‘_x_x’;
 > var regex1 = /x/;

 > regex1.exec(str)
 [‘x’, index: 1, input: ‘_x_x’]
 > regex1.exec(str)
 [‘x’, index: 1, input: ‘_x_x’]

If the flag /g is set, then all matches are returned – the first one on the first invocation,
the second one on the second invocation, etc.

 > var regex2 = /x/g;

 > regex2.exec(str)
 [‘x’, index: 1, input: ‘_x_x’]
 > regex2.exec(str)
 [‘x’, index: 3, input: ‘_x_x’]
 > regex2.exec(str)
 null

Strings have the method

 String.prototype.match(regex)

REGEXP.PROTOTYPE.EXEC(): CAPTURING GROUPS, OPTIONALLY REPEATEDLY

STRING.PROTOTYPE.MATCH():

4 of 8

http://www.2ality.com/2013/08/regexp-g.html%23%5B1%5D

TUTORIALS THE FLAG / G OF JAVASCRIPT’S REGULAR EXPRESSIONS

If the flag /g of regex is not set then this method behaves like RegExp.prototype.
exec(). If the flag /g is set then this method returns all matching substrings of the
string (every group 0). If there is no match then null is returned.

> var regex = /x/g;

 > ‘_x_x’.match(regex)
 [‘x’, ‘x’]
 > ‘abc’.match(regex)
 null

Strings have the method

 String.prototype.replace(search, replacement)

If search is either a string or a regular expression whose flag /g is not set, then only
the first match is replaced. If the flag /g is set, then all matches are replaced.

 > ‘_x_x’.replace(/x/, ‘y’)
 ‘_y_x’
 > ‘_x_x’.replace(/x/g, ‘y’)
 ‘_y_y’

Regular expressions whose /g flag is set are problematic if a method working with
them must be invoked multiple times to return all results. That’s the case for two
methods:

• RegExp.prototype.test()
• RegExp.prototype.exec()

REPLACE(): SEARCH AND REPLACE

THE PROBLEM WITH THE /G FLAG

5 of 8

TUTORIALS THE FLAG / G OF JAVASCRIPT’S REGULAR EXPRESSIONS

Then JavaScript abuses the regular expression as an iterator, as a pointer into the
sequence of results. That causes problems:

• You can’t inline the regular expression when you call those methods. For example:

 // Don’t do that:
 var count = 0;
 while (/a/g.test(‘babaa’)) count++;

The above loop is infinite, because a new regular expression is created for
each loop iteration, which restarts the iteration over the results. Therefore, the
above code must be rewritten:

 var count = 0;
 var regex = /a/g;
 while (regex.test(‘babaa’)) count++;

Note: it’s a best practice not to inline, anyway, but you have to be aware that
you can’t do it, not even in quick hacks.

• Code that wants to invoke test() and exec() multiple times must be careful
with regular expressions handed to it as a parameter. Their flag /g must be set
and it must reset their lastIndex.

The following example illustrates the latter problem.

EXAMPLE: COUNTING OCCURRENCES
The following is a naive implementation of a function that counts how many matches
there are for the regular expression regex in the string str.

 // Naive implementation
 function countOccurrences(regex, str) {
 var count = 0;
 while (regex.test(str)) count++;
 return count;
 }

An example of using this function:

 > countOccurrences(/x/g, ‘_x_x’)
 2

6 of 8

TUTORIALS THE FLAG / G OF JAVASCRIPT’S REGULAR EXPRESSIONS

The first problem is that this function goes into an infinite loop if the regular
expression’s /g flag is not set, e.g.:

 countOccurrences(/x/, ‘_x_x’)

The second problem is that the function doesn’t work correctly if regex.lastIndex
isn’t 0. For example:

 > var regex = /x/g;
 > regex.lastIndex = 2;
 2
 > countOccurrences(regex, ‘_x_x’)
 1

The following implementation fixes the two problems:

 function countOccurrences(regex, str) {
 if (! regex.global) {
 throw new Error(‘Please set flag /g of regex’);
 }
 var origLastIndex = regex.lastIndex; // store
 regex.lastIndex = 0;

 var count = 0;
 while (regex.test(str)) count++;

 regex.lastIndex = origLastIndex; // restore
 return count;
 }

USING MATCH() TO COUNT OCCURRENCES
A simpler alternative is to use match():

 function countOccurrences(regex, str) {
 if (! regex.global) {
 throw new Error(‘Please set flag /g of regex’);
 }
 return (str.match(regex) || []).length;
 }

One possible pitfall: str.match() returns null if the /g flag is set and there are
no matches (solved above by accessing length of [] if the result of match() isn’t
truthy).

7 of 8

TUTORIALS THE FLAG / G OF JAVASCRIPT’S REGULAR EXPRESSIONS

PERFORMANCE CONSIDERATIONS
Juan Ignacio Dopazo compared the performance of the two implementations of
counting occurrences and found out that using test() is faster, presumably because
it doesn’t collect the results in an array.

Mathias Bynens and Juan Ignacio Dopazo pointed me to match() and test(),
Šime Vidas warned me about being careful with match() if there are no matches.

[1]JavaScript: an overview of the regular expression API`

ACKNOWLEDGEMENTS

REFERENCE

Dr. Axel Rauschmayer

JavaScript Trainer & Consultant

his blog

twitter

share

github

https://twitter.com/juandopazo
http://jsperf.com/regex-counting
http://jsperf.com/regex-counting
https://twitter.com/mathias
https://twitter.com/juandopazo
https://twitter.com/simevidas
http://www.2ality.com/2011/04/javascript-overview-of-regular.html
http://www.2ality.com/
https://twitter.com/rauschma

appliness(TUTORIALS PHONEGAP BOOKMARK / SHARE / TOC

Porting a PhoneGap
App to FireFox OS

by Andrew Trice

TUTORIALS PORTING A PHONEGAP APP TO FIREFOX OS

by Andrew
Trice

2 of 4

About a year ago I released the Fresh Food Finder, a multi-platform mobile application
built with PhoneGap. The Fresh Food Finder provides an easy way to search for farmer’s
markets near your current location, based on the farmer’s markets listings from the
USDA. This app has seen a lot of popularity lately, so I’m working on a new version for
all platforms with a better data feed, better UI, and overall better UX – unfortunately,
that version isn’t ready yet. However, I have been able to bring it to an additional
platform this week: Firefox OS!

PhoneGap support is coming for Firefox OS, and in preparation I wanted to become
familiar with the Firefox OS development environment and platform ecosystem. So…
I ported the Fresh Food Finder, minus the specific PhoneGap API calls. The best part
(and this really shows the power of web-standards based development…) is that I
was able to take the existing PhoneGap codebase, and turn it into a Firefox OS app
AND submit it to the Firefox Marketplace in under 24 hours! If you’re interested, you
can check out progress on Firefox OS support in the Cordova project, and it will be
available on PhoneGap.com once it’s actually released.

“PhoneGap support is
coming for FireFox OS.”

http://www.tricedesigns.com/fresh-food-finder/
http://phonegap.com/
http://www.ams.usda.gov/AMSv1.0/farmersmarkets
http://www.ams.usda.gov/AMSv1.0/farmersmarkets
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
https://marketplace.firefox.com/
http://cordova.apache.org/
http://phonegap.com/

TUTORIALS PORTING A PHONEGAP APP TO FIREFOX OS

So, on to the app (you can download the Fresh Food Finder in the Firefox Maketplace
here)…

Basically, I commented out the PhoneGap-specific API calls, added a few minor
bug fixes, and added a few Firefox-OS specific layout/styling changes (just a few
minor things so that my app looked right on the device). Then you put in a mainfest.
webapp configuration file, package it up, then submit it to the app store. Check it
out in the video below to see it in action, running on a Firefox OS device…

The phone I am using is a Geeksphone Firefox OS developer device. It’s not a
production/consumer model, so there were a few hiccups using it, but overall it
was a good experience. Also, many thanks to Jason Weathersby from Mozilla for
helping me get the latest device image running on my phone.

You can learn more about getting started with Firefox OS development here:

• Getting Started
• Firefox OS Simulator
• Packaging Firefox OS Apps
• Submitting to the Firefox Marketplace

3 of 4

http://www.geeksphone.com/
https://twitter.com/JasonWeathersby
https://developer.mozilla.org/en-US/docs/Web/Apps
https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator
https://developer.mozilla.org/en-US/docs/Web/Apps/Packaged_apps
https://marketplace.firefox.com/developers/

TUTORIALS PORTING A PHONEGAP APP TO FIREFOX OS

Also, be sure to check out the Fresh Food Finder:

• PhoneGap Source
• Firefox OS Source
• Original Blog Entry
• Download for Firefox Market (Open Web App)
• Download for iOS (PhoneGap)
• Download for Android (PhoneGap)

Andrew Trice
Technical Creative Cloud Evangelist

his blog

twitter

share

github

https://github.com/triceam/Fresh-Food-Finder/
https://github.com/triceam/Fresh-Food-Finder/tree/Firefox-OS
https://github.com/triceam/Fresh-Food-Finder/tree/Firefox-OS
https://marketplace.firefox.com/app/fresh-food-finder/
https://itunes.apple.com/us/app/fresh-food-finder/id524261275%3Fmt%3D8
https://play.google.com/store/apps/details%3Fid%3Dcom.tricedesigns.FreshFood%26hl%3Den
http://www.tricedesigns.com/
https://twitter.com/andytrice
https://github.com/triceam

appliness(TUTORIALS HTML BOOKMARK / SHARE / TOC

PouchDB

by Dale Harvey

TUTORIALS POUCHDB

by Dale
Harvey

2 of 9

In this tutorial we will write a basic Todo web application based on TodoMVC that
syncs to an online CouchDB server. It should take around 10 minutes.

We will start with a template of the project where all the data related functions have
been replaced with empty stubs, download and unzip pouchdb-getting-started-todo.
zip. When dealing with XHR and IndexedDB you are better running web pages from a
server as opposed to a filesystem, to do this you can run:

$ cd pouchdb-getting-started-todo
$ python -m SimpleHTTPServer

Then visit http://127.0.0.1:8000/, if you see the following screenshot, you are good to
go:

GETTING STARTED GUIDE

DOWNLOAD ASSETS

“We will write a basic Todo
web application based on

TodoMVC.”

http://pouchdb.com/getting-started.html
http://pouchdb.com/getting-started.html

TUTORIALS POUCHDB

It wont do anything at this point, but it is a good idea to open your browsers
console so you can see any errors or confirmation messages.

Open index.html and include PouchDB in the app by adding a script tag:

<script src=”http://download.pouchdb.com/pouchdb-nightly.js”></script>
<script src=”js/base.js”></script>
<script src=”js/app.js”></script>

PouchDB is now installed in your app and ready to use (In production you should
copy a version locally and use that).

The rest of the work will be done inside app.js. We will start by creating a database
to enter your todos, to create a database simply instantiate a new PouchDB object
with the name of the database:

// EDITING STARTS HERE (you dont need to edit anything above this line)

var db = new PouchDB(‘todos’);
var remoteCouch = false;

You dont need to create a schema the database, you simply give it a name and you
can start writing objects to it.

INSTALLING POUCHDB

CREATING A DATABASE

3 of 9

TUTORIALS POUCHDB

The first thing we shall do is start writing items to the database, the main input will
call addTodo with the current text when the user presses Enter, we can complete
this function will the following code:

function addTodo(text) {
 var todo = {
 _id: new Date().toISOString(),
 title: text,
 completed: false
 };
 db.put(todo, function callback(err, result) {
 if (!err) {
 console.log(‘Successfully posted a todo!’);
 }
 });
}

In PouchDB each document is required to have a unique _id, any subsequent
writes to a document with the same _id will be considered updates, here we are
using a date string as for this use case will be unique and it can also be used to
order items by date entered (you can use PouchDB.uuids() or db.post() if
you want random ids). The _id is the only thing required when creating a new
document, the rest of the object you can create as you like.

The callback function will be called once the document has been written (or
failed to write). If the err argument is not null then it will have an object explaining
the error, otherwise the result will hold the result.

We have included a helper function redrawTodosUI here that takes an array of
todos to display so we just need to read them from the database, here we will
simply read all the documents using db.allDocs, the include_docs option tells
PouchDB to give us the data within each document and the descending option
tells PouchDB how to order the results based on their _id field, giving us newest
first.

WRITE TODOS TO THE DATABASE

SHOW ITEMS FROM THE DATABASE

4 of 9

TUTORIALS POUCHDB

function showTodos() {
 db.allDocs({include_docs: true, descending: true}, function(err, doc) {
 redrawTodosUI(doc.rows);
 });
}

Once you have included this code you should be able to refresh the page to see
any todos you have entered.

We dont want to refresh the page to see new items, more typically you would
update the UI manually when you write data to it, however in PouchDB you may
be syncing data remotely and want to make sure you update when the remote
data changes to do this we will call db.changes which subscribes to updates
to the database wherever they come from. You can enter this code between the
remoteCouch and addTodo declaration:

var remoteCouch = false;

db.info(function(err, info) {
 db.changes({
 since: info.update_seq,
 continuous: true,
 onChange: showTodos
 });
});

// Show the current list of todos by reading them from the database
function addTodo() {

So every time an update happens to the database we will redraw the UI showing
the new data, the continuous flag means this function will continue to run
indefinitely. Now try entering a new todo and it should appear immediately.

UPDATE THE UI

5 of 9

TUTORIALS POUCHDB

When the user checks a checkbox the checkboxChanged function will be called
so we shall fill in the code to edit the object and call db.put:

function checkboxChanged(todo, event) {
 todo.completed = event.target.checked;
 db.put(todo);
}

This is similiar to creating a document however the document must also contain
a _rev field (in addition to _id) otherwise the write will be rejected, this ensures
that you dont accidently overwrite changes to a document.

You can test this works by checking a todo item and refreshing the page, it should
stay checked.

To delete an object you can call db.remove with the object.

function deleteButtonPressed(todo) {
 db.remove(todo);
}

Similiarly to editing a document, both the _id and _rev properties are required.
You may notice we are passing around the full object that we previously read from
the database, you can of course manually construct the object like: {_id: todo._
id, _rev: todo._rev}, passing around the existing object is usually more
convenient and less error prone.

EDIT A TODO

DELETE AN OBJECT

6 of 9

TUTORIALS POUCHDB

todoBlurred is called when the user edits a document, here we shall delete the
document if the user has entered a blank title or update it if not.

function todoBlurred(todo, event) {
 var trimmedText = event.target.value.trim();
 if (!trimmedText) {
 db.remove(todo);
 } else {
 todo.title = trimmedText;
 db.put(todo);
 }
}

Now we will implement the syncing, you need to have an CouchDB instance, you
can either install CouchDB(1.3+) locally or use an online provider like IrisCouch.

To replicate directly with CouchDB you need to make sure CORS is enabled, only set
the username and password if you have set them previously, by default CouchDB
will be installed in “Admin Party” and they are not needed, you will need to replace
the myname.iriscouch.com with your own host (127.0.0.1:5984 if installed
locally):

$ export HOST=http://username:password@myname.iriscouch.com
$ curl -X PUT $HOST/_config/httpd/enable_cors -d ‘”true”’
$ curl -X PUT $HOST/_config/cors/origins -d ‘”*”’
$ curl -X PUT $HOST/_config/cors/credentials -d ‘”true”’
$ curl -X PUT $HOST/_config/cors/methods -d ‘”GET, PUT, POST, HEAD, DELETE”’
$ curl -X PUT $HOST/_config/cors/headers -d \
 ‘”accept, authorization, content-type, origin”’

COMPLETE REST OF THE TODO UI

INSTALLING COUCHDB

ENABLING CORS

7 of 9

http://couchdb.apache.org/
http://www.iriscouch.com/

TUTORIALS POUCHDB

Now we will have the todo list sync, back to app.js we need to specify the
address of the remote database, remember to replace user, pass and myname.
iriscouch.com with the credentials of your CouchDB instance:

// EDITING STARTS HERE (you dont need to edit anything above this line)

var db = new PouchDB(‘todos’);
var remoteCouch = ‘http://user:pass@mname.iriscouch.com/todos’;

Then we can implement the sync function like so:

function sync() {
 syncDom.setAttribute(‘data-sync-state’, ‘syncing’);
 var opts = {continuous: true, complete: syncError};
 db.replicate.to(remoteCouch, opts);
 db.replicate.from(remoteCouch, opts);
}

db.replicate() tells PouchDB to transfer all the documents to or from the
remoteCouch, this can either be a string identifier or a PouchDB object. We call
this twice, one to receive remote updates and one to push local changes, again the
continuous flag is used to tell PouchDB to carry on doing this indefinitely. The
complete callback will be called whenever this finishes, for continuous replication
this will mean an error has occured, losing your connection for instance.

You should be able to open the todo app in another browser and see that the 2
lists stay in sync with any changes you make to them, You may also want to look at
your CouchDBs Futon administration page and see the populated database.

IMPLEMENT BASIC TWO WAY SYNC

8 of 9

TUTORIALS POUCHDB

You completed your first PouchDB application. This is a basic example and a real
world application will need to integrate more error checking, user signup etc,
however you should now understand the basics you need to start working on your
own PouchDB project, if you have any more questions please get in touch on IRC
or the mailing list.

CONGRATULATIONS!

Dale Harvey
Web Developer

his blog

twitter

share

github

https://groups.google.com/forum/%23%21forum/pouchdb
http://pouchdb.com/
https://twitter.com/pouchdb
https://github.com/daleharvey/pouchdb

appliness(TUTORIALS JAVASCRIPT BOOKMARK / SHARE / TOC

Why I test
private functions in
JavaScript

by Philip Walton

TUTORIALS WHY I TEST PRIVATE FUNCTIONS IN JAVASCRIPT

by Philip
Walton

2 of 9

I published an article on this blog entitled How to Unit Test Private Functions in JavaScript.
The article was well received and even mentioned in a few popular newsletters (most
notably JavaScript Weekly). Still, a decent amount of the feedback I received in the
comments and on Twitter strongly disagreed with my approach. The most common
criticism was: unit testing private functions is unnecessary and a mark of bad design.

Admittedly, that article focused too much on the “how” of the technique and not
enough on the “why”.

In this article I’ll try to respond to some of that criticism and go a little deeper into the
rationale behind my decisions.

When you don’t explain your reasons, it’s easy for readers to make incorrect assumptions.
I definitely didn’t explain my rationale nearly enough in the last article, so I suppose
I’m mostly to blame.

To help clarify what I am saying, I think it would be helpful to start by pointing out what
I am not saying:

• I’m not saying you should always test your private functions.
• I’m not saying you should test all of your private functions.
• I’m not saying people who don’t test private functions are doing it wrong.

It’s fine if people disagree with me. In fact, I welcome the debate and enjoy hearing
counter arguments, especially from developers with a lot more experience. At the end
of the day, it’s up to each individual to weigh the arguments and make up their own
mind.

I just want to make sure we’re arguing about the same thing.

WHAT I’M NOT SAYING

“I’m not saying you should
always test your private

functions.”

http://philipwalton.com/articles/how-to-unit-test-private-functions-in-javascript/
http://javascriptweekly.com/archive/138.html

TUTORIALS WHY I TEST PRIVATE FUNCTIONS IN JAVASCRIPT

The title of my previous article used the term “private functions”, but if you look at
the language used by most of the commenters who disagreed with my approach,
they almost all said “private methods”.

I’m not pointing this out to be nit-picky or overly technical. I honestly think this fact
helps illuminate a disconnect. Perhaps a carryover of general computer science
principles applied too liberally to JavaScript.

To avoid confusion, I probably should have titled the article: “How to Test JavaScript
Code That’s Inside a Closure”. After all, that’s really what I was talking about.

JAVASCRIPT DOES NOT HAVE PRIVATE METHODS

Wikipedia defines a method in computer science as:

Methods define the behavior to be exhibited by instances of the associated
class at program run time. Methods have the special property that at
runtime, they have access to data stored in an instance of the class (or
class instance or class object or object) they are associated with and are
thereby able to control the state of the instance.

By this definition, a method in JavaScript is a function found on the object’s prototype
chain that can use the this context to change or report the state of the instance.
But any code with access to an instance variable also has access to that instance’s
constructor and thus the constructor’s prototype.

That means any “methods” on an object must be public to the current scope.

IN JAVASCRIPT, PRIVATE SIMPLY MEANS INACCESSIBLE TO THE CURRENT
SCOPE

Private variables and functions in JavaScript aren’t just used to modify or report
the state of an instance. They do much more. They could be a helper function, a
constructor function; even an entire class or module.

In other words, “private” in JavaScript doesn’t necessarily mean “implementation
detail”. Private simply means the code is not accessible in the current scope.

DEFINING THE TERMINOLOGY: WHAT DOES PRIVATE MEAN IN JAVASCRIPT?

3 of 9

http://en.wikipedia.org/wiki/Method_%28computer_programming%29

TUTORIALS WHY I TEST PRIVATE FUNCTIONS IN JAVASCRIPT

Since JavaScript usually runs in the browser and shares the same global scope as
all other JavaScript code on the page, most developers wrap their entire library in
a closure and only expose the parts they need to.

This is probably the most common reason JavaScript developers make their code
private.

In addition, since browser libraries are under tremendous pressure to keep their
file size small and their dependency count low, it’s quite common for library authors
to roll their own implementations of already solved problems.

Most back-end languages have a standard way of including modules, and there
is usually little to no performance cost incurred by including a large module and
only using a small portion of it. But this is definitely not the case in the browser.
Until there is more standardization and consensus around client-side modules and
module dependencies, and until more front-end libraries transition from large
monolithic frameworks to smaller, single-purpose modules, most browser library
authors will continue to operate in this manner.

For example, I’m not going to make Underscore.js a dependency of my library if all
I need is _.debounce(). I’ll just write my own debounce function. And if I write
it myself, I’m probably going to want to test it. However, I’m probably not going
to want to expose it globally. I mean, why would I expose it when it’s just a simple
implementation only meant for my particular use case?

Similarly, if my library requires doing only a few basic DOM operations, I’m not
going to require all of jQuery, I’ll probably just write the needed functions myself.
I might even combine them into their own DOM module that perhaps has its own
private functions inside the module closure. I may choose not to test the private
functions in the module, but I’ll definitely want to test the module itself, regardless
of whether I choose to expose it globally.

Hopefully the day will come when we have an elegant solution to library dependency
management in the browser, but until that day is here, I’m going to continue to
write my own simple implementations rather than force my users to add hundreds
of kilobytes to their JavaScript footprint.

In any case, my decision as to whether or not to test these implementations should
have no bearing on my decision as to whether or not to expose them globally.

WHY DO DEVELOPERS MAKE CODE PRIVATE IN JAVASCRIPT?

4 of 9

TUTORIALS WHY I TEST PRIVATE FUNCTIONS IN JAVASCRIPT

From one of the comments on my previous post:

Unit tests are supposed to test the interfaces to an object without any
concern for their implementation.

I fully agree with this statement. And if you’re doing traditional TDD, you’ll typically
write your unit tests first, before you decide how you’ll implement a feature. So for
true TDD, it’s really not possible to test your implementation details since they’re
undecided at the time you write your tests.

However, this isn’t the only reason I test my code. In addition to testing the public
API, unit tests are also very useful for catching regression caused by future code
changes.

For example, if a test fails and you’re only testing functions in the public API,
it may be difficult to find out what’s causing the failure. If you only have a few
private functions it’s probably not a big deal, but if you have several self-contained
private modules and numerous helper functions, a failing test might not give you
any indication as to where exactly the failure is occurring, and it might take a while
to track down.

Again, keep in mind that I’m not just talking about private “methods” within a
particular module. I’m talking about any code that you’ve chosen to keep hidden
in a closure and you’re testing implicitly through the public API, be it functions,
modules, classes — whatever. The more code you keep hidden and don’t test
explicitly, the harder it is to track down errors when a test fails.

At some point it makes a lot more sense to just test that behavior explicitly.

WHAT IS THE PURPOSE OF TESTING?

5 of 9

http://philipwalton.com/articles/how-to-unit-test-private-functions-in-javascript/%23comment-957687744

TUTORIALS WHY I TEST PRIVATE FUNCTIONS IN JAVASCRIPT

My HTML Inspector tool illustrates a lot of the points I’ve made in this post. In fact,
it’s what prompted me to try to figure out ways to test private code in the first
place.

HTML Inspector exposes a single object called HTMLInspector in the global
scope. The HTMLInspector object contains a few public functions, but internally
there are a number of modules that I’ve chosen to keep hidden. Here are the three
main hidden modules:

• Listener: which implements a basic observable pattern and contains the methods
on, off, and trigger.

• Reporter: stores the errors reported by the rules and contains the methods
warn and getWarnings.

• Callbacks: similar to jQuery’s callbacks and contains the methods add, remove,
and fire.

Each of these modules is my own implementation of objects I’ve seen in other
libraries. I could have merely used the versions in those libraries, but it was quite
easy to implement them myself, and doing so greatly reduces the barrier to entry
for my users.

I could have also exposed these modules publicly by adding them to the global
HTMLInspector object (and originally that’s what I did), but in the end I concluded
it made much more sense to keep them hidden. After all, there’s no real use-case
for users of the library to access them directly.

Still, I definitely wanted to test each of the public methods listed above, despite
the fact that the modules themselves were private.

A REAL-LIFE EXAMPLE

6 of 9

https://github.com/philipwalton/html-inspector

TUTORIALS WHY I TEST PRIVATE FUNCTIONS IN JAVASCRIPT

To help understand the structure of the library, here’s a simplified representation.
The “include module” comments represent individual JavaScript files that are
inserted at that particular place in the code during a build step:

(function(root, document) {

 // include module Listener
 // include module Reporter
 // include module Callbacks

 root.HTMLInspector = {
 somePublicMethod: function() {
 // makes calls to the included modules
 },
 someOtherPublicMethod: function() {
 // makes calls to the included modules
 }
 }
}(this, document))

As you can see, the above library includes three self-contained modules, each with
their own set of methods. But each of those modules is inside the closure and thus
hidden from the global scope.

PRIVATE OR PUBLIC

If you were writing tests for HTML Inspector, you’d have to make a choice:

• Keep the modules private, don’t test them at all, and hope the tests written for
the public API provide enough coverage.

• Expose the modules publicly by storing them on the HTMLInspector object and
test their individual functions that way.

Many people argue that if your code is private it doesn’t need to be tested, and
if it’s so complex that it warrants testing, then it should be made public. But to be
honest, that logic seems rather circular to me.

The modules either warrant testing or they don’t. And they either should be private
or they shouldn’t. The two issues are orthogonal.

The decision to make functionality public or private should be purely about program
design, encapsulation, and a separation of concerns.

7 of 9

TUTORIALS WHY I TEST PRIVATE FUNCTIONS IN JAVASCRIPT

Sometimes, due to language constraints, code must be public in order to be tested,
but I consider that an entirely different question. Sacrificing API design for testing
because of language constraints should be seen as a necessary evil, not as a best-
practice.

And taking advantage of tools to mitigate language constraints should be seen as
liberating, not as proof of a code smell.

NOT TESTING PRIVATE CODE DOESN’T NECESSARILY MEAN WRITING FEWER
TESTS

The HTML Inspector example above has three modules, and each module contains
a few functions — eight in total.

If you were unit testing the module functions directly, you’d likely only need eight
tests.

However, if you were testing the module functions indirectly through the public
API, you may very well need a lot more tests depending on the complexity of those
modules and the sheer number of combinations with which their functions may call
each other. In addition, those tests may require a lot more setup and tear down
just to get to a state where you could even write your assertions.

In short, if testing just the public API ends up making the tests longer, more complex,
and harder to debug regressions, it’s no longer a better option.

8 of 9

TUTORIALS WHY I TEST PRIVATE FUNCTIONS IN JAVASCRIPT

In JavaScript, developers often hide a lot more than just “methods”. Modules,
classes, and even entire programs can all be private. In fact, it’s not uncommon to
see a library that doesn’t expose a single global variable.

Due to the nature of the browser environment, code is kept private for a variety of
reasons. It’s not always simply because that code is an implementation detail.

As a final thought, I understand (and largely agree with) the aversion to testing
private methods and the general desire to avoid over-testing. However, I think it’s
worth putting the whole issue into perspective. Obviously over-testing is something
that is possible, but in the end it does very little harm. At worst, it may waste some
time, but I’d far rather err on the side of over-testing than under-testing.

WRAPPING UP

Philip Walton
Software Engineer

his blog

twitter

share

github

http://philipwalton.com/
https://twitter.com/philwalton
https://github.com/philipwalton

appliness(NEWS BY BRIAN RINALDI BOOKMARK / SHARE / TOC

Why all objects are
truthy in JS
by Dr. Axel

Rauschmayer
Webkit

implemented
srcset

by
Mat Marquis

Exploding
Blocks with
CSS & JS
 Johnny
Simpson

Traceur
TodoMVC
by Addy
Osmani

Kickstart Angular dev with
Yeoman, Grunt & Bower

 by Brad Barrow

Protecting
Objects in JS
 by Dr. Axel

Rauschmayer

Generate CSS
Grid with Stylus
 by David Walsh

Testing
node

apps with
Jasmine

by Codeship

Functional
CSS

 by Matt
Baker

Detecting CSS Style
Support

Ryan Morr

appliness(MORE NEWS ON HTTP://FLIPPINAWESOME.ORG/

http://www.2ality.com/2013/08/objects-truthy.html%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%25202ality%2520%282ality%2520%25E2%2580%2593%2520technology%2C%2520life%29%26utm_content%3Dbuffer67016%26utm_medium%3Dfacebook
http://www.2ality.com/2013/08/objects-truthy.html%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%25202ality%2520%282ality%2520%25E2%2580%2593%2520technology%2C%2520life%29%26utm_content%3Dbuffer67016%26utm_medium%3Dfacebook
http://www.2ality.com/2013/08/objects-truthy.html%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%25202ality%2520%282ality%2520%25E2%2580%2593%2520technology%2C%2520life%29%26utm_content%3Dbuffer67016%26utm_medium%3Dfacebook
http://www.2ality.com/2013/08/objects-truthy.html%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%25202ality%2520%282ality%2520%25E2%2580%2593%2520technology%2C%2520life%29%26utm_content%3Dbuffer67016%26utm_medium%3Dfacebook
http://www.2ality.com/2013/08/objects-truthy.html%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%25202ality%2520%282ality%2520%25E2%2580%2593%2520technology%2C%2520life%29%26utm_content%3Dbuffer67016%26utm_medium%3Dfacebook
http://mobile.smashingmagazine.com/2013/08/21/webkit-implements-srcset-and-why-its-a-good-thing/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffere1056%26utm_medium%3Dfacebook
http://mobile.smashingmagazine.com/2013/08/21/webkit-implements-srcset-and-why-its-a-good-thing/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffere1056%26utm_medium%3Dfacebook
http://mobile.smashingmagazine.com/2013/08/21/webkit-implements-srcset-and-why-its-a-good-thing/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffere1056%26utm_medium%3Dfacebook
http://mobile.smashingmagazine.com/2013/08/21/webkit-implements-srcset-and-why-its-a-good-thing/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffere1056%26utm_medium%3Dfacebook
http://mobile.smashingmagazine.com/2013/08/21/webkit-implements-srcset-and-why-its-a-good-thing/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffere1056%26utm_medium%3Dfacebook
http://www.inserthtml.com/2013/08/exploding-blocks-css-and-javascript/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer346a9%26utm_medium%3Dfacebook
http://www.inserthtml.com/2013/08/exploding-blocks-css-and-javascript/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer346a9%26utm_medium%3Dfacebook
http://www.inserthtml.com/2013/08/exploding-blocks-css-and-javascript/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer346a9%26utm_medium%3Dfacebook
http://www.inserthtml.com/2013/08/exploding-blocks-css-and-javascript/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer346a9%26utm_medium%3Dfacebook
http://www.inserthtml.com/2013/08/exploding-blocks-css-and-javascript/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer346a9%26utm_medium%3Dfacebook
http://addyosmani.com/blog/traceur-todomvc/
http://addyosmani.com/blog/traceur-todomvc/
http://addyosmani.com/blog/traceur-todomvc/
http://addyosmani.com/blog/traceur-todomvc/
http://www.sitepoint.com/kickstart-your-angularjs-development-with-yeoman-grunt-and-bower/
http://www.sitepoint.com/kickstart-your-angularjs-development-with-yeoman-grunt-and-bower/
http://www.sitepoint.com/kickstart-your-angularjs-development-with-yeoman-grunt-and-bower/
http://www.2ality.com/2013/08/protecting-objects.html
http://www.2ality.com/2013/08/protecting-objects.html
http://www.2ality.com/2013/08/protecting-objects.html
http://www.2ality.com/2013/08/protecting-objects.html
http://davidwalsh.name/stylus-grid%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%2520Bludice%2520%28David%2520Walsh%2520Blog%29%26utm_content%3Dbuffer6aaeb%26utm_medium%3Dfacebook
http://davidwalsh.name/stylus-grid%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%2520Bludice%2520%28David%2520Walsh%2520Blog%29%26utm_content%3Dbuffer6aaeb%26utm_medium%3Dfacebook
http://davidwalsh.name/stylus-grid%3Futm_source%3Dfeedburner%26utm_campaign%3DFeed:%2520Bludice%2520%28David%2520Walsh%2520Blog%29%26utm_content%3Dbuffer6aaeb%26utm_medium%3Dfacebook
http://blog.codeship.io/2013/08/20/testing-tuesday-19-how-to-test-node-js-applications-with-jasmine.html%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer67e1c%26utm_medium%3Dfacebook
http://blog.codeship.io/2013/08/20/testing-tuesday-19-how-to-test-node-js-applications-with-jasmine.html%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer67e1c%26utm_medium%3Dfacebook
http://blog.codeship.io/2013/08/20/testing-tuesday-19-how-to-test-node-js-applications-with-jasmine.html%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer67e1c%26utm_medium%3Dfacebook
http://blog.codeship.io/2013/08/20/testing-tuesday-19-how-to-test-node-js-applications-with-jasmine.html%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer67e1c%26utm_medium%3Dfacebook
http://blog.codeship.io/2013/08/20/testing-tuesday-19-how-to-test-node-js-applications-with-jasmine.html%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer67e1c%26utm_medium%3Dfacebook
http://flippinawesome.org/2013/08/26/functional-css-fcss/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer22606%26utm_medium%3Dfacebook
http://flippinawesome.org/2013/08/26/functional-css-fcss/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer22606%26utm_medium%3Dfacebook
http://flippinawesome.org/2013/08/26/functional-css-fcss/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer22606%26utm_medium%3Dfacebook
http://flippinawesome.org/2013/08/26/functional-css-fcss/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer22606%26utm_medium%3Dfacebook
http://flippinawesome.org/2013/08/26/functional-css-fcss/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer22606%26utm_medium%3Dfacebook
http://ryanmorr.com/detecting-css-style-support/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer23eed%26utm_medium%3Dfacebook
http://ryanmorr.com/detecting-css-style-support/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer23eed%26utm_medium%3Dfacebook
http://ryanmorr.com/detecting-css-style-support/%3Futm_source%3Dbuffer%26utm_campaign%3DBuffer%26utm_content%3Dbuffer23eed%26utm_medium%3Dfacebook
http://flippinawesome.org/

	Button 8:
	Button 5:
	Button 7:
	Button 6:
	Button 4:
	button1:
	Button 3:
	Button 2:

